Skip to main content

Lectures on D-branes, Tachyon Condensation, and String Field Theory

  • Chapter
Lectures on Quantum Gravity

Part of the book series: Series of the Centro De Estudios CientĂ­ficos ((SCEC))

Abstract

These lectures provide an introduction to the subject of tachyon condensation in the open bosonic string. The problem of tachyon condensation is first described in the context of the low-energy Yang-Mills description of a system of multiple D-branes, and then using the language of string field theory. An introduction is given to Witten’s cubic open bosonic string field theory. The Sen conjectures on tachyon condensation in open bosonic string field theory are introduced, and evidence confirming these conjectures is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ohmori, “A review on tachyon condensation in open string field theories,” hep-th/0102085.

    Google Scholar 

  2. P. J. De Smet, “Tachyon condensation: Calculations in string field theory,” hep-th/0109182.

    Google Scholar 

  3. I. Y. Aref’eva, D. M. Belov, A. A. Giryavets, A. S. Koshelev and P. B. Medvedev, “Noncommutative field theories and (super)string field theories,” hep-th/0111208.

    Google Scholar 

  4. W. Taylor and B. Zwiebach, “TASI’ 01 lectures on D-branes, tachyons, and string field theory,” to appear.

    Google Scholar 

  5. Hull, C. M., and P. K. Townsend, “Unity of superstring dualities,” Nucl. Phys. B 438, 109, 1995; hep-th/9410167.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Witten, E. “String Theory Dynamics in Various Dimensions,” Nucl. Phys. B 443; 85 1995; hep-th/9503124.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Townsend, P. K., “The eleven-dimensional supermembrane revisited,” Phys. Lett. B 350, 184, 1995; hep-th/9501068.

    Article  MathSciNet  ADS  Google Scholar 

  8. Hořava, P. and E. Witten, “Heterotic and type I string dynamics from eleven dimensions,” Nucl. Phys. B 460, 506, 1996; hep-th/9510209.

    Article  ADS  Google Scholar 

  9. W. Taylor, “M(atrix) theory: matrix quantum mechanics as a fundamental theory,” Rev. Mod. Phys. 73, 419, 2001; hep-th/0101126

    Article  ADS  Google Scholar 

  10. Aharony, O., S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183, 2000; hep-th/9905111.

    Article  MathSciNet  ADS  Google Scholar 

  11. G. Veneziano, “Construction of a crossing-symmetric, Regge-behaved amplitude for linearly rising trajectories,” Nuovo Cim. 57A 190 (1968).

    Article  ADS  Google Scholar 

  12. D. J. Gross, A. Neveu, J. Scherk and J. H. Schwarz, “Renormalization and unitarity in the dual resonance model,” Phys. Rev. D2 (1970) 697.

    ADS  Google Scholar 

  13. C. Lovelace, “Pomeron form factors and dual Regge cuts,” Phys. Lett. B34 (1971) 500.

    ADS  Google Scholar 

  14. M. R. Douglas and N. A. Nekrasov, “Noncommutative field theory,” Rev. Mod. Phys. 73, 977 (2001), hep-th/0106048.

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Polchinski, “TASI Lectures on D-branes,” hep-th/9611050.

    Google Scholar 

  16. W. Taylor, “Trieste lectures on D-branes, gauge theory and M(atrices),” hep-th/9801182.

    Google Scholar 

  17. M. J. Duff, R. R. Khuri and J. X. Lu, “String solitons,” Phys. Rept. 259, 213 (1995), hep-th/9412184.

    Article  MathSciNet  ADS  Google Scholar 

  18. E. Witten, “Non-commutative geometry and string field theory,” Nucl. Phys. B268 253, (1986).

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Sen, “Universality of the tachyon potential,” JHEP 9912, 027 (1999), hep-th/9911116.

    Article  ADS  Google Scholar 

  20. J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75 (1995), 4724, hep-th/9510017.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. R. G. Leigh, “Dirac-Born-Infeld action from Dirichlet sigma model,” Mod. Phys. Lett. A4 (1989), 2767.

    MathSciNet  ADS  Google Scholar 

  22. E. Witten, “Bound States of Strings and p-Branes,” Nucl. Phys. B460 (1996), 335, hep-th/9510135.

    Article  MathSciNet  ADS  Google Scholar 

  23. A. A. Tseytlin, “Born-Infeld action, supersymmetry and string theory,” hep-th/9908105; P. Koerber and A. Sevrin, “The non-abelian D-brane effective action through order alpha’** 4,” JHEP 0210, 046 (2002), hep-th/0208044; S. Stieberger and T. R. Taylor, “Non-Abelian Born-Infeld action and type I-heterotic duality. II: Nonrenormalization theorems,” Nucl. Phys. B 648, 3 (2003), hep-th/0209064; D. T. Grasso, “Higher order contributions to the effective action of N = 4 super Yang-Mills,” JHEP 0211, 012 (2002), hep-th/0210146.

    Google Scholar 

  24. W. Taylor and M. Van Raamsdonk, “Multiple D0-branes in weakly curved backgrounds,” Phys. Lett. B558 (1999), 63, hep-th/9904095; “Multiple Dp-branes in weak background fields,” Nucl. Phys. B573, 703 (2000), hep-th/9910052.

    Google Scholar 

  25. R. C. Myers, “Dielectric-branes,” JHEP 9912 (1999), 022, hep-th/9910053.

    Article  MathSciNet  ADS  Google Scholar 

  26. Polchinski, J. String theory (Cambridge University Press, Cambridge, England, 1998).

    Book  Google Scholar 

  27. W. Taylor, “D-brane Field Theory on Compact Spaces,” Phys. Lett. B394 (1997), 283; hep-th/9611042.

    ADS  Google Scholar 

  28. T. Banks and L. Susskind, “Brane-Antibrane Forces,” hep-th/9511194.

    Google Scholar 

  29. A. Hashimoto and W. Taylor, “Fluctuation Spectra of Tilted and Intersecting D-branes from the Born-Infeld Action,” Nucl. Phys. B503 (1997), 193–219; hep-th/9703217.

    Article  MathSciNet  ADS  Google Scholar 

  30. E. Gava, K. S. Narain and M. H. Sarmadi, “On the bound states of p-and (p+2),-branes,” Nucl. Phys. B 504, 214 (1997), hep-th/9704006.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Green, M. B., J. H. Schwarz, and E. Witten, Superstring theory (Cambridge University Press, Cambridge, England, 1987).

    MATH  Google Scholar 

  32. K. Bardakci, “Spontaneous symmetry breaking in the standard dual string model,” Nucl. Phys. B133 (1978), 297.

    Article  ADS  Google Scholar 

  33. V. A. Kostelecky and S. Samuel, “On a nonperturbative vacuum for the open bosonic string,” Nucl. Phys. B336 (1990), 263–296.

    Article  ADS  Google Scholar 

  34. A. Leclair, M. E. Peskin and C. R. Preitschopf, “String field theory on the conformal plane (I),” Nucl. Phys. B317 (1989), 411–463.

    Article  MathSciNet  ADS  Google Scholar 

  35. C. Thorn, “String field theory,” Phys. Rep. 175 (1989), 1.

    Article  MathSciNet  ADS  Google Scholar 

  36. M. R. Gaberdiel and B. Zwiebach, “Tensor constructions of open string theories 1., 2.,” Nucl. Phys. B505 (1997), 569, hep-th/9705038; Phys. Lett. B410 (1997), 151, hep-th/9707051.

    Article  MathSciNet  ADS  Google Scholar 

  37. D. J. Gross and A. Jevicki, “Operator formulation of interacting string field theory (I), (II),” Nucl. Phys. B283 (1987), 1; Nucl. Phys. B287 (1987), 225.

    MathSciNet  ADS  Google Scholar 

  38. E. Cremmer, A. Schwimmer and C. Thorn, “The vertex function in Witten’s formulation of string field theory” Phys. Lett. B179 57 (1986).

    MathSciNet  ADS  Google Scholar 

  39. S. Samuel, “The physical and ghost vertices in Witten’s string field theory,” Phys. Lett. B181 255 (1986).

    MathSciNet  ADS  Google Scholar 

  40. N. Ohta, “Covariant interacting string field theory in the Fock space representation,” Phys. Rev. D34 (1986), 3785; Phys. Rev. D35 (1987), 2627 (E).

    ADS  Google Scholar 

  41. J. Shelton, to appear.

    Google Scholar 

  42. I. Bars, “MSFT: Moyal star formulation of string field theory,” hep-th/0211238.

    Google Scholar 

  43. I. Y. Aref’eva, A. S. Koshelev, D. M. Belov and P. B. Medvedev, “Tachyon condensation in cubic superstring field theory,” Nucl. Phys. B 638, 3 (2002), hep-th/0011117. G. Bandelloni and S. Lazzarini, “The geometry of W3 algebra: A twofold way for the rebirth of a symmetry,” Nucl. Phys. B 594, 477 (2001), hep-th/0011208.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. N. Berkovits, “Super-Poincare invariant superstring field theory,” Nucl. Phys. B450 (1995), 90, hep-th/9503099; “Review of open superstring field theory,” hep-th/0105230; “The Ramond sector of open superstring field theory,” JHEP 0111, 047 (2001), hep-th/0109100.

    Article  MathSciNet  ADS  Google Scholar 

  45. S. B. Giddings and E. J. Martinec, “Conformal Geometry and String Field Theory,” Nucl. Phys. B278, 91 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  46. S. B. Giddings, E. J. Martinec and E. Witten, “Modular Invariance In String Field Theory,” Phys. Lett. B 176, 362 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  47. B. Zwiebach, “A Proof That Witten’s Open String Theory Gives A Single Cover Of Moduli Space,” Commun. Math. Phys. 142, 193 (1991).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. D. Z. Freedman, S. B. Giddings, J. A. Shapiro and C. B. Thorn, “The Nonplanar One Loop Amplitude In Witten’s String Field Theory,” Nucl. Phys. B 298, 253 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  49. J. A. Harvey and P. Kraus, “D-branes as unstable lumps in bosonic open string field theory,” JHEP 0004, 012 (2000), hep-th/0002117

    Article  MathSciNet  ADS  Google Scholar 

  50. R. de Mello Koch, A. Jevicki, M. Mihailescu and R. Tatar, “Lumps and p-branes in open string field theory,” Phys. Lett. B 482, 249 (2000), hep-th/0003031.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. N. Moeller, A. Sen and B. Zwiebach, “D-branes as tachyon lumps in string field theory,” JHEP 0008, 039 (2000), hep-th/0005036.

    Article  MathSciNet  ADS  Google Scholar 

  52. A. Sen and B. Zwiebach, “Tachyon condensation in string field theory,” JHEP 0003, 002 (2000), hep-th/9912249.

    Article  MathSciNet  ADS  Google Scholar 

  53. N. Moeller and W. Taylor, “Level truncation and the tachyon in open bosonic string field theory,” Nucl. Phys. B 583, 105 (2000), hep-th/0002237.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. D. Gaiotto and L. Rastelli, “Progress in open string field theory,” Presentation by L. Rastelli at Strings 2002, Cambridge, England; http://www.damtp.cam.ac.uk/strings02/avt/rastelli/.

    Google Scholar 

  55. W. Taylor, “A Perturbative Analysis of Tachyon Condensation,” hep-th/0208149.

    Google Scholar 

  56. W. Taylor, “Perturbative diagrams in string field theory,” hep-th/0207132.

    Google Scholar 

  57. D. Gaiotto and L. Rastelli, “Experimental string field theory,” hep-th/0211012.

    Google Scholar 

  58. I. Ellwood and W. Taylor, “Gauge invariance and tachyon condensation in open string field theory,” hep-th/0105156.

    Google Scholar 

  59. A. A. Gerasimov and S. L. Shatashvili, “On exact tachyon potential in open string field theory,” JHEP 0010, 034 (2000), hep-th/0009103; D. Kutasov, M. Marino and G. Moore, “Some exact results on tachyon condensation in string field theory,” JHEP 0010, 045 (2000), hep-th/0009148; D. Ghoshal and A. Sen, “Normalisation of the background independent open string field JHEP 0011, 021 (2000), hep-th/0009191; D. Kutasov, M. Marino and G. Moore, D. Kutasov, M. Marino and G.W. Moore, “Remarks on tachyon condensation in superstring field theory,”, hep-th/0010108; S. Moriyama and S. Nakamura, “Descent relation of tachyon condensation from boundary string Phys. Lett. B 506, 161 (2001), hep-th/0011002; A. A. Gerasimov and S. L. Shatashvili, “Stringy Higgs mechanism and the fate of open strings,” JHEP 0101, 019 (2001), hep-th/0011009; I. Y. Aref’eva, A. S. Koshelev, D. M. Belov and P. B. Medvedev, “Tachyon condensation in cubic superstring field theory,” Nucl. Phys. B 638, 3 (2002), hep-th/0011117; P. Kraus and F. Larsen, “Boundary string field theory of the D D-bar system,” Phys. Rev. D 63, 106004 (2001), hep-th/0012198; M. Alishahiha, H. Ita and Y. Oz, “On superconnections and the tachyon effective action,” Phys. Lett. B 503, 181 (2001), hep-th/0012222; G. Chalmers, “Open string decoupling and tachyon condensation,” JHEP 0106, 012 (2001), hep-th/0103056; M. Marino, “On the BV formulation of boundary superstring field theory,” JHEP 0106, 059 (2001), hep-th/0103089; V. Niarchos and N. Prezas, “Boundary superstring field theory,” Nucl. Phys. B 619, 51 (2001), hep-th/0103102; K. S. Viswanathan and Y. Yang, “Tachyon condensation and background independent superstring field theory,” Phys. Rev. D64, 106007 (2001), hep-th/0104099; M. Alishahiha, “One-loop correction of the tachyon action in boundary superstring field theory,” Phys. Lett. B 510, 285 (2001), hep-th/0104164.

    Article  MathSciNet  ADS  Google Scholar 

  60. L. Rastelli, A. Sen and B. Zwiebach, “String field theory around the tachyon vacuum,” Adv. Theor. Math. Phys. 5, 353 (2002), hep-th/0012251.

    MathSciNet  Google Scholar 

  61. I. Ellwood and W. Taylor, “Open string field theory without open strings,” Phys. Lett. B 512, 181 (2001), hep-th/0103085.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. I. Ellwood, B. Feng, Y. H. He and N. Moeller, “The identity string field and the tachyon vacuum,” JHEP 0107, 016 (2001), hep-th/0105024.

    Article  MathSciNet  ADS  Google Scholar 

  63. H. Hata and T. Kawano, “Open string states around a classical solution in vacuum string field theory,” JHEP 0111, 038 (2001), hep-th/0108150.

    Article  MathSciNet  ADS  Google Scholar 

  64. D. Gaiotto, L. Rastelli, A. Sen and B. Zwiebach, “Ghost structure and closed strings in vacuum string field theory,” hep-th/0111129.

    Google Scholar 

  65. K. Okuyama, “Ghost kinetic operator of vacuum string field theory,” JHEP 0201, 027 (2002), hep-th/0201015.

    Article  MathSciNet  ADS  Google Scholar 

  66. L. Rastelli, A. Sen and B. Zwiebach, “Classical solutions in string field theory around the tachyon vacuum,” Adv. Theor. Math. Phys. 5, 393 (2002), hep-th/0102112.

    MathSciNet  Google Scholar 

  67. H. Hata and S. Moriyama, “Observables as twist anomaly in vacuum string field theory,” JHEP 0201, 042 (2002), hep-th/0111034. L. Rastelli, A. Sen and B. Zwiebach, “A note on a proposal for the tachyon state in vacuum string field theory,” JHEP 0202, 034 (2002), hep-th/0111153. H. Hata, S. Moriyama and S. Teraguchi, “Exact results on twist anomaly,” JHEP 0202, 036 (2002), hep-th/0201177.

    Article  MathSciNet  ADS  Google Scholar 

  68. Y. Okawa, “Open string states and D-brane tension from vacuum string field theory,” JHEP 0207, 003 (2002), hep-th/0204012.

    Article  MathSciNet  ADS  Google Scholar 

  69. D. J. Gross and W. Taylor, “Split string field theory II,” JHEP 0108, 010 (2001), hep-th/0106036.

    Article  MathSciNet  ADS  Google Scholar 

  70. G. Moore and W. Taylor, “The singular geometry of the sliver,” JHEP 0201, 004 (2002), hep-th/0111069.

    Article  MathSciNet  ADS  Google Scholar 

  71. L. Rastelli and B. Zwiebach, “Tachyon potentials, star products and universality,” JHEP 0109, 038 (2001), hep-th/0006240.

    Article  MathSciNet  ADS  Google Scholar 

  72. V. A. Kostelecky and R. Potting, “Analytical construction of a nonperturbative vacuum for the open bosonic string,” Phys. Rev. D 63, 046007 (2001), hep-th/0008252.

    Article  MathSciNet  ADS  Google Scholar 

  73. R. Gopakumar, S. Minwalla and A. Strominger, “Noncommutative solitons,” JHEP 0005, 020 (2000), hep-th/0003160.

    Article  MathSciNet  ADS  Google Scholar 

  74. M. R. Douglas and N. A. Nekrasov, “Noncommutative field theory,” Rev. Mod. Phys. 73, 977 (2001), hep-th/0106048.

    Article  MathSciNet  ADS  Google Scholar 

  75. L. Rastelli, A. Sen and B. Zwiebach, “Half strings, projectors, and multiple D-branes in vacuum string field theory,” JHEP 0111, 035 (2001), hep-th/0105058.

    Article  MathSciNet  ADS  Google Scholar 

  76. D. J. Gross and W. Taylor, “Split string field theory I,” JHEP 0108, 009 (2001), hep-th/0105059.

    Article  MathSciNet  ADS  Google Scholar 

  77. D. Gaiotto, L. Rastelli, A. Sen and B. Zwiebach, “Star algebra projectors,” JHEP 0204, 060 (2002), hep-th/0202151.

    Article  MathSciNet  ADS  Google Scholar 

  78. M. Schnabl, “Wedge states in string field theory,” JHEP 0301, 004 (2003), hep-th/0201095; “Anomalous reparametrizations and butterfly states in string field theory,” Nucl. Phys. B 649, 101 (2003), ep-th/0202139.

    Article  MathSciNet  ADS  Google Scholar 

  79. I. Ellwood and W. Taylor, to appear.

    Google Scholar 

  80. N. Moeller, A. Sen and B. Zwiebach, “D-branes as tachyon lumps in string field theory,” JHEP 0008, 039 (2000), ep-th/0005036.

    Article  MathSciNet  ADS  Google Scholar 

  81. A. Sen and B. Zwiebach, “Large marginal deformations in string field theory,” JHEP 0010, 009 (2000), hep-th/0007153.

    Article  MathSciNet  ADS  Google Scholar 

  82. J. Kluson, “Marginal deformations in the open bosonic string field theory for N D0-branes,” hep-th/0203089; “Exact solutions in open bosonic string field theory and marginal deformation in CFT,” hep-th/0209255.

    Google Scholar 

  83. B. Zwiebach, “A solvable toy model for tachyon condensation in string field theory,” JHEP 0009, 028 (2000), hep-th/0008227.

    Article  MathSciNet  ADS  Google Scholar 

  84. A. Strominger, “Closed strings in open string field theory,” Phys. Rev. Lett. 58 629 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  85. J. A. Shapiro and C. B. Thorn, “BRST invariant transitions between open and closed strings,” Phys. Rev. D36 432 (1987); “closed string-open string transitions in Witten’s string field theory,” Phys. Lett. B 194, 43 (1987).

    MathSciNet  ADS  Google Scholar 

  86. A. A. Gerasimov and S. L. Shatashvili, “Stringy Higgs mechanism and the fate of open strings,” JHEP 0101, 019 (2001), hep-th/0011009. S. L. Shatashvili, “On field theory of open strings, tachyon condensation and closed strings,” hep-th/0105076.

    Article  MathSciNet  ADS  Google Scholar 

  87. A. Hashimoto and N. Itzhaki, “Observables of string field theory,” JHEP 0201, 028 (2002), hep-th/0111092.

    Article  MathSciNet  ADS  Google Scholar 

  88. M. Alishahiha and M. R. Garousi, “Gauge invariant operators and closed string scattering in open string field theory,” Phys. Lett. B 536, 129 (2002), hep-th/0201249.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  89. C. Wendt, “Scattering amplitudes and contact interactions in Witten’s superstring field theory,” Nucl. Phys. B314 (1989) 209.

    Article  MathSciNet  ADS  Google Scholar 

  90. J. Greensite and F. R. Klinkhamer, “Superstring amplitudes and contact interactions,” Phys. Lett. B304 (1988) 108.

    MathSciNet  Google Scholar 

  91. N. Berkovits, A. Sen and B. Zwiebach, “Tachyon condensation in superstring field theory,” Nucl. Phys. B 587, 147 (2000), hep-th/0002211; P. De Smet and J. Raeymaekers, “Level four approximation to the tachyon potential in superstring JHEP 0005, 051 (2000), hep-th/0003220; A. Iqbal and A. Naqvi, “Tachyon condensation on a non-BPS D-brane,”, hep-th/0004015; P. De Smet and J. Raeymaekers, “The tachyon potential in Witten’s superstring field theory,” JHEP 0008, 020 (2000), hep-th/0004112

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Taylor, W. (2005). Lectures on D-branes, Tachyon Condensation, and String Field Theory. In: Gomberoff, A., Marolf, D. (eds) Lectures on Quantum Gravity. Series of the Centro De Estudios CientĂ­ficos. Springer, Boston, MA. https://doi.org/10.1007/0-387-24992-3_4

Download citation

Publish with us

Policies and ethics