Skip to main content

Early Developments in Muscle Research and the Role of New Structural Technologies

  • Conference paper
Sliding Filament Mechanism in Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 565))

9. Conclusion

Over the last fifty years or so, then, it has been very remarkable, and encouraging, to see how the well-directed scientific efforts of many people and many laboratories have been so successful in providing the tools for what were originally almost unimaginable opportunities to explore molecular reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Faruqi, A.R. and Bond, C.C. (1980). Parallel readout multiwire proportional chambers for time-resolved X-ray diffraction experiments. Nucl. Instrum. Methods 179, 71–77.

    Article  Google Scholar 

  • Finer, J. T., Simmons, R. M., and Spudich, J. A. (1994). Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, J., and Huxley, H. E. (1953). The structural basis of the cross-striation in muscle. Nature, Lond. 172, 530–532.

    Article  CAS  Google Scholar 

  • Hanson, J., and Lowy, J. (1963). The structure of F-actin and actin filaments isolated from muscle. J. Mol. Biol. 6, 46–60.

    Article  CAS  Google Scholar 

  • Haselgrove, J. C, Faruqi, A. R., Huxley, H. E., and Arndt, U. W. (1977). The Design and Use of a Camera for Low Angle X-ray Diffraction Experiments with Synchrotron Radiation. J. Physics 10, 1035–1044.

    Google Scholar 

  • Huxley, A. F., and Niedergerke, R. (1954). Structural changes in muscle during contraction. Interference microscopy of living muscle fibres. Nature (London) 173, 971–973.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1951). Low-angle X-ray diffraction studies on muscle. Disc. Faraday Soc. 11, 148.

    Google Scholar 

  • Huxley, H. E. (1953a). X-ray diffraction and the problem of muscle. Proc. Roy. Soc. B. 141, 58–63

    Google Scholar 

  • Huxley, H. E. (1953). Electron-microscope studies of the organization of the filaments in striated muscle. Biochem. Biophys. Acta 12., 387–394.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E., and Hanson, J. (1954). Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature, Lond. 173, 973–976.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1957a). The double array of filaments in cross-striated muscle. J. Biophys. & Biochem. Ctyol. 3, 631–648.

    Article  CAS  Google Scholar 

  • Huxley, H. E., and Zubay, G. (1960). Electron microscope observations on the structure of microsomal particles from Escherichai Coli. J. Mol. Biol. 2, 10–18.

    Google Scholar 

  • Huxley, H. E., and Zubay, G. (1960). The structure of the protein shell of turnip yellow mosaic virus. J. Mol. Biol. 2, 189–196.

    CAS  Google Scholar 

  • Huxley, H. E. (1963). Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. Mol. Biol. 7, 281–308.

    CAS  Google Scholar 

  • Huxley, H. E., Brown, W., and Holmes, K. C. (1965). Constancy of axial spacings in frog sartorius muscle during contraction. Nature 206, 1358.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E., and Brown, W. (1967). The low angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J. Mol. Biol. 30, 383–434.

    PubMed  CAS  Google Scholar 

  • Huxley, H. E., Reconditi, M., Stewart, A., and Irving, T. (2000). Interference changes on the 14.5nm reflection during rapid length changes. Biophys. J. 78, 134A.

    Google Scholar 

  • Kishino, A., and Yanagida, T. (1988). Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74–76.

    Article  PubMed  CAS  Google Scholar 

  • Kron, S. J., and Spudich, J. A. (1986). Fluorescent actin filaments move on myosin fixed to a glass surface. Proc. Nat. Acad. Sci. 83, 6272–6276.

    Article  PubMed  CAS  Google Scholar 

  • Linari M, Piazzesi G, Dobbie I, Koubassova N, Reconditi M, Narayanan T, Diat O, Irving M, Lombardi V. (2000) Interference fine structure and sarcomere length dependence of the axial x-ray pattern from active single muscle fibers. Proc Natl Acad Sci USA. 97(13), 7226–31.

    Article  PubMed  CAS  Google Scholar 

  • Rayment, I., Rypniewski, W., Schmidt-Base, K., Smith, R., Tomchick, D., Benning, M., Winkelmann, D., Wesenberg, G., and Holden, H. (1993). Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 162, 50–58.

    Article  Google Scholar 

  • Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C, and R.A, M. (1993). Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–65.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum, G., Holmes, K.C., and Witz, J., (1971). Synchrotron Radiation as a Source for X-ray Diffraction. (1971). Synchrotron Radiation as a Source for X-ray Diffraction. Nature 230, 434–437.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Huxley, H.E. (2005). Early Developments in Muscle Research and the Role of New Structural Technologies. In: Sugi, H. (eds) Sliding Filament Mechanism in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 565. Springer, Boston, MA. https://doi.org/10.1007/0-387-24990-7_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-24990-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24989-6

  • Online ISBN: 978-0-387-24990-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics