Skip to main content

Part of the book series: The Handbooks of Fuzzy Sets Series ((FSHS,volume 4))

Abstract

Digital image processing is the study of theories, models and algorithms for the manipulation of images (usually by computer). It spans a wide variety of topics such as digitization, histogram manipulation, warping, filtering, segmentation, restoration and compression. Computer vision deals with theories and algorithms for automating the process of visual perception, and involves tasks such as noise removal, smoothing, and sharpening of edges (low-level vision); segmentation of images to isolate object regions, and description of the segmented regions (intermediate-level vision); and finally, interpretation of the scene (high-level vision). Thus, there is much overlap between these two fields. In this chapter, we concentrate on some of the aspects of image processing and computer vision in which a fuzzy approach has had an impact. We begin with some notation and definitions used throughout the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Comments and bibliography

  • Pal, N. R. and Pal, S. K. (1993). A review of image segmentation techniques, Patt. Recog., 26 (9), 1277–1294.

    Article  Google Scholar 

  • Gader, P., Mohamed, M. and Keller, J. M. (1996a). Dynamicprogramming-based handwritten word recognition using the Choquet integral as the match function, J. of Electronic Imaging, 5 (1), 15–24.

    Article  Google Scholar 

  • Bezdek, J. C. and Sutton, M. A. (1999). Image processing in medicine, Applications of Fuzzy Systems, ed. H. J. Zimmerman, Kluwer, Norwell, MA, in Press.

    Google Scholar 

  • Pienkowski, A. (1989). Artificial Colour Perception using Fuzzy Techniques in Digital Image Processing, Verlag TUV Rheinland, Germany.

    MATH  Google Scholar 

  • Chi, Z., Yan, H. and Pham, T. (1996a). Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition, World Scientific, Singapore.

    MATH  Google Scholar 

  • Heath, M. D., Sarkar, S., Sanocki, T. and Bowyer, K. W. (1997). A robust visual method for assessing the relative performance of edge-detection algorithms, IEEE Trans. Patt. Anal. and Machine Intell., 19 (12), 1338–1359.

    Article  Google Scholar 

  • Tanaka, K. and Sugeno, M. (1991). A sudy on subjective evaluations of printed color images, Int. J. of Approx. Reasoning, 5 (3), 213–222.

    Article  MATH  MathSciNet  Google Scholar 

  • Karayiannis, N. B. and Pai, P. I. (1996). Fuzzy algorithms for learning vector quantization, IEEE Trans. Neural Networks, 7 (5), 1196–1211.

    Article  Google Scholar 

  • Karayiannis, N. B. (1997b). Entropy constrained learning vector quantization algorithms and their application in image compression, Proc. SPIE Conf. on Applications of Artificial Neural Networks in Image Processing II, 3030, SPIE, Bellingham, WA, 2–13.

    Chapter  Google Scholar 

  • Wang, T. C. and Karayiannis, N. B. (1997). Compression of digital mammograms using wavelets and learning vector quantization, in SPIE Proc. Applications of Artificial Neural Networks in Image Processing II, 3030, SPIE, Bellingham, WA, 44–55.

    Chapter  Google Scholar 

  • Kosko, B. (1992). Neural Networks and Fuzzy Systems, Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  • Kosko, B. (1997). Fuzzy Engineering, Prentice-Hall, Upper Saddle River, NJ.

    MATH  Google Scholar 

  • Wang L., Wang M., Yamada M., Seki H., and Itoh H. (1996). Fuzzy reasoning for image compression using adaptive triangular plane patches, Proc, Int. Conf. on Soft Computing, 2, eds. T. Yamakawa G. Matsumoto, World Scientific, Singapore, 753–756

    Google Scholar 

  • Sinha, D. and Dougherty, E. R. (1995). A general axiomatic theory of intrinsically fuzzy mathematical morphologies, IEEE Trans. Fuzzy Syst., 3 (4), 389–403.

    Article  Google Scholar 

  • Sinha, D., Sinha, P., Dougherty, E. R. and Batman, S. (1997). Design and analysis of fuzzy morphological algorithms for image processing, IEEE Trans. Fuzzy Syst., 5 (4), 570–584.

    Article  Google Scholar 

  • Bloch, I. and Maitre, H. (1993). Mathematical morphology on fuzzy sets, Proc. EURASIP Conf. on Math. Morphology Applications Signal Processing, Barcelona, 151–156.

    Google Scholar 

  • Sinha, D. and Dougherty, E. R. (1992). Fuzzy mathematical morphology, J. Comm. Image Representation, 3 (3), 286–302.

    Article  Google Scholar 

  • Sinha, D. and Dougherty, E. R. (1995). A general axiomatic theory of intrinsically fuzzy mathematical morphologies, IEEE Trans. Fuzzy Syst., 3 (4), 389–403.

    Article  Google Scholar 

  • Sinha, D., Sinha, P., Dougherty, E. R. and Batman, S. (1997). Design and analysis of fuzzy morphological algorithms for image processing, IEEE Trans. Fuzzy Syst., 5 (4), 570–584.

    Article  Google Scholar 

  • Bloch, I., Pellot, C., Sureda, F. and Herment, A. (1997). Fuzzy modeling and fuzzy mathematical morphology applied to 3D reconstruction of blood vessels by multi-modality data fusion, Fuzzy Information Engineering, eds. D. Dubois, H. Prade and R.R. Yager, Wiley and Sons, NY, 93–110.

    Google Scholar 

  • Park, J-S and Keller, J. M. (1997). Fuzzy patch label relaxation in bone marrow cell segmentation, Proc. IEEE Int. Conference on Syst., Man, and Cyberns., IEEE Press, Piscataway, NJ, 1133–1138.

    Google Scholar 

  • Illingworth, J. and Kittler, J. (1987). The adaptive Hough transform, IEEE Trans. Patt. Anal. and Machine Intell., 9 (5), 690–698.

    Article  Google Scholar 

  • Jain, A. K. and Dubes, R. (1988). Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Jain, A. K. and Flynn, P. J. (1996). Image segmentation by clustering, in Advances in Image Understanding, eds. K. Bowyer and N. Ahuja, IEEE Computer Society Press, Los Alamitos, CA., 65–83.

    Google Scholar 

  • Jain, R., Kasturi, R. and Schunck, B. G. (1995). Machine Vision, McGraw-Hill, NY.

    Google Scholar 

  • Jang, J.-S. R. (1994). Structure determination in fuzzy modeling: A fuzzy CART approach, Proc. IEEE Int. Conf. on Fuzzy Syst., IEEE Press, Piscataway, NJ, 480–485.

    Google Scholar 

  • Jang, J.-S. R., Sun C.-T. and Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing, Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Janikow, C. Z. (1996a). Exemplar learning in fuzzy decision trees, Proc. IEEE Int. Conf. on Fuzzy Syst., IEEE Press, Piscataway, NJ, 1500–1505.

    Chapter  Google Scholar 

  • Janikow, C. Z. (1996b). A genetic algorithm method for optimizing fuzzy decision trees, Inf. Sci., 89 (3–4), 275–296.

    Article  MathSciNet  Google Scholar 

  • Janikow, C. Z. (1998). Fuzzy decision trees: issues and methods, IEEE Trans. Syst., Man and Cyberns., B28 (1), 1–14.

    Article  Google Scholar 

  • Johnson, J. L. (1994). Pulse-coupled neural nets: translation, rotation, scale, distortion and intensity signal invariances for images, Applied Optics, 33 (26), 6239–6253.

    Article  Google Scholar 

  • Johnson, R. A. and Wichern, D. W. (1992). Applied Multivariate Statistical Analysis, 3rd ed., Prentice Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  • Thomason, M. G. (1973). Finite fuzzy automata, regular fuzzy languages and pattern recognition, Patt. Recog., 5, 383–390.

    Article  Google Scholar 

  • Thorndike, R. L. (1953). Who belongs in the family?, Psychometrika, 18, 267–276.

    Article  Google Scholar 

  • Titterington, D., Smith, A. and Makov, U. (1985). Statistical Analysis of Finite Mixture Distributions, Wiley, NY.

    MATH  Google Scholar 

  • Tolias, Y. A. and Panos, S. M. (1998). Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions, IEEE Trans. Systs., Man and Cyberns., A28 (3), 359–369.

    Google Scholar 

  • Tou, J. T. (1979). DYNOC–A dynamic optimum cluster-seeking technique, Int. J. Comp. Syst. Science, 8, 541–547.

    MATH  MathSciNet  Google Scholar 

  • Tou, J. T. and Gonzalez, R. (1974). Pattern Recognition Principles, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Toussaint, G. T. (1974). Bibliography on estimation of misclassification, IEEE Trans. Inf. Theory, 20, 472–479.

    Article  MATH  MathSciNet  Google Scholar 

  • Trauwaert, E. (1987).. d1 in fuzzy clustering, Statistical Data Analysis based on the Norm, ed. Y. Dodge, Elsevier, Amsterdam, 417–426.

    Google Scholar 

  • Trauwaert, E. (1988). On the meaning of Dunn’s partition coefficient for fuzzy clusters, Fuzzy Sets and Syst., 25, 217–242.

    MATH  Google Scholar 

  • Trauwaert, E., Kaufman, L. and Rouseeuw, P. J. (1988). Fuzzy clustering algorithms based on the maximum likelihood principle, Fuzzy Sets and Syst., 25, 213–227.

    Google Scholar 

  • Trivedi, M. and Bezdek, J. C. (1986). Low level segmentation of aerial images with fuzzy clustering, IEEE Trans. Syst., Man and Cyberns., 16 (4), 580–598.

    Article  Google Scholar 

  • Tsai, W. H. and Fu, K. S. (1979). Error correcting isomorphism of attributed relational graphs for pattern analysis, IEEE Trans. Syst., Man and Cyberns., 9 (12), 757–768.

    Article  MATH  Google Scholar 

  • Tucker, W. (1987). Counterexamples to the convergence theorem for fuzzy isodata clustering algorithms, The Analysis of Fuzzy Information, ed. J. Bezdek, 3, 109–121, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Tukey, J. (1977). Exploratory Data Analysis, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Carazo, J. M., Rivera, F.F., Zapata, E.L., Radermacher, M. and Frank, J. (1990). Fuzzy sets-based classification of electron microscopy images of biological macromolecules with an application to ribsomeal particles, J. Microscopy, 157 (2), 187–203.

    Article  Google Scholar 

  • Chang, C. W., Hillman, G.R., Ying, H., Kent, T. and Yen, J. (1994). Segmentation of rat brain MR images using a hybrid fuzzy system, Proc. Joint NAFIPS/IFIS/NASA Conf., 55–59.

    Google Scholar 

  • Chang, C. W., Hillman, G.R., Ying, H., Kent, T. and Yen, J. (1995). Automatic labeling of human brain structures in 3D MRI using fuzzy logic, Proc. CFSA/IFIS/SOFT Conf. World Scientific, 27–34.

    Google Scholar 

  • Chang, C.W., Hillman, G.R., Ying, H. and Yen, J. (1995). A two stage human brain MRI segmentation scheme using fuzzy logic Proc. IEEE Int. Conf. on Fuzzy Systems, IEEE Press, Piscataway, NJ, 649–654.

    Google Scholar 

  • Choe, H. and Jordan, J. B. (1992). On the optimal choice of parameters in a fuzzy c-means algorithm, Proc. IEEE Int. Conf. on Fuzzy Syst., IEEE Press, Piscataway, NJ, 349–354.

    Chapter  Google Scholar 

  • Conover, W. J., Bement, T. R. and Iman, R. L. (1979), On a method for detecting clusters of possible uranium deposits, Technometrics 21, 277–282.

    Article  Google Scholar 

  • Davé R. N. and K. J. Patel, Fuzzy ellipsoidal-shell clustering algorithm and detection of elliptical shapes, SPIE Proc. Intelligent Robots and Computer Vision IX, ed. D.P. Casasent, 1607, 320–333.

    Google Scholar 

  • Davé, R. N. (1992). Boundary detection through fuzzy clustering, Proc. IEEE Int. Conf. on Fuzzy Syst., IEEE Press, Piscataway, NJ, 127–134.

    Chapter  Google Scholar 

  • Davé, R. N. (1993). Robust fuzzy clustering algorithms, Proc. IEEE Int. Conf. on Fuzzy Syst., IEEE Press, Piscataway, NJ, 1281–1286.

    Google Scholar 

  • Paz, R., Berstein, R., Hanson, W. and Walker, M. (1986). Approximate fuzzy c-means (AFCM) cluster analysis of medical magnetic resonance image (MRI) data–a system for medical research and education, IEEE Trans. Geosci. and Remote Sensing, GE25, 815–824.

    Google Scholar 

  • Mori, R. (1983). Computerized Models of Speech Using Fuzzy Algorithms, Plenum Press, NY.

    Book  Google Scholar 

  • Mori, R. and Laface, P. (1980). Use of fuzzy algorithms for phonetic and phonemic labeling of continuous speech, IEEE Trans. Patt. Anal. and Machine Intell., 2, 136–148.

    Article  Google Scholar 

  • Oliveira, M.C. and Kitney, R. I. (1992). Texture analysis for discrimination of tissues in MRI data, Proc. Computers in Cardiology, IEEE Press, Piscataway, NJ, 481–484.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bezdek, J.C., Keller, J., Krisnapuram, R., Pal, N.R. (1999). Image Processing and Computer Vision. In: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. The Handbooks of Fuzzy Sets Series, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-24579-0_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-24579-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24515-7

  • Online ISBN: 978-0-387-24579-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics