Skip to main content

Innate Immunity in Experimental Autoimmune Myocarditis

  • Chapter
Molecular Autoimmunity

6. Conclusions

Autoimmune myocarditis can be induced in susceptible strains of mice by infection with coxsackievirus B3. The most prominent antibody elicited by the viral infection reacts with the cardiac isoform of myosin and immunization of susceptible mice with cardiac myosin replicates the autoimmune disease. A number of traits determine whether a particular strain of mice is susceptible to autoimmune myocarditis, but the critical decision is made early after infection during the innate immune response. Four of the major components of the innate response have been investigated and found to contribute to susceptibility: the complement system; NK cells; early-acting proinflammatory cytokines and chemokines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afanasyeva, M., Georgakopoulos, D., Belardi, D.F., Bedja D., Fairweather, D., Wang, Y., Kaya, Z., Gabrielson, K.L., Rodriguez, E.R., Caturegli, P., Kass, D.A., and Rose, N.R. (2005). Impaired up-regulation of CD25 on CD4+ T cells in IFN-gamma knockout mice is associated with progression of myocarditis to heart failure. Proc. Natl. Acad. Sci., 102, 180–185.

    Article  CAS  PubMed  Google Scholar 

  • Afanasyeva, M., Georgakopoulos, D., Belardi, D.F., Ramsundar, A.C., Barin, J.G., Kass, D.A., and Rose, N.R. (2004). Quantitative analysis of myocardial inflammation by flow cytometry in murine autoimmune myocarditis. Am. J. Pathol., 164, 807–815.

    PubMed  Google Scholar 

  • Afanasyeva, M., Georgakopoulos, D., and Rose, N.R. (2004). Autoimmune myocarditis: cellular mediators of cardiac dysfunction. Autoimmun. Rev., 3, 476–486.

    Article  CAS  PubMed  Google Scholar 

  • Afanasyeva, M. and Rose, N.R. (2002a). Immune mediators in inflammatory heart disease: Insights from a mouse model. Eur. Heart J., 4(Suppl. 1), 131–146.

    Google Scholar 

  • Afanasyeva, M. and Rose, N.R. (2002b). Cardiomyopathy is linked to complement activation. Am. J. Pathol., 161, 351–357.

    CAS  PubMed  Google Scholar 

  • Afanasyeva, M. and Rose, N.R. (2004). Viral infection and heart disease: autoimmune mechanisms. In: Y. Shoenfeld and N.R. Rose. (eds), Infection and Autoimmunity. Elsevier, Amsterdam. pp. 299–318.

    Google Scholar 

  • Afanasyeva, M., Wang, Y., Kaya, Z., Park, S., Zilliox, M.J., Schofield, B.H., Hill, S.L., and Rose, N.R. (2001b). Experimental autoimmune myocarditis in A/J mice is an interleukin-4-dependent disease with a Th2 phenotype. Am. J. Pathol., 159, 193–203.

    CAS  PubMed  Google Scholar 

  • Afanasyeva, M., Wang, Y., Kaya, Z., Stafford, E.A., Dohmen, K.M., Sadighi Akha, A.A., and Rose, N.R. (2001a). Interleukin-12 receptor/STAT4 signaling is required for the development of autoimmune myocarditis in mice by an interferon-gamma-independent pathway. Circulation, 104, 3145–3151.

    CAS  PubMed  Google Scholar 

  • Bachmaier, K., Pummerer, C., Shahinian, A., Ionescu, J., Neu, N., Mak, T.W., and Penninger, J.M. (1996). Induction of autoimmunity in the absence of CD28 costimulation. J. Immunol., 157, 1752–1757.

    CAS  PubMed  Google Scholar 

  • Badorff, C., Berkely, N., Mehrotra, S., Talhouk, J.W., Rhoads, R.E., and Knowlton, K.U. (2000). Enteroviral protease 2A directly cleaves dystrophin and is inhibited by a dystrophin-based substrate analogue. J. Biol. Chem., 275, 11191–11197.

    Article  CAS  PubMed  Google Scholar 

  • Badorff, C., Lee, G.H., Lamphear, B.J., Martone, M.E., Campbell, K.P., Rhoads, R.E., and Knowlton, K.U. (1999). Enteroviral protease 2A cleaves dystrophin: Evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat. Med., 5, 320–326.

    CAS  PubMed  Google Scholar 

  • Caforio, A.L., Mahon, N.J., and Mckenna, W.J. (2001). Cardiac autoantibodies to myosin and other heart-specific autoantigens in myocarditis and dilated cardiomyopathy. Autoimmunity, 34, 199–204.

    CAS  PubMed  Google Scholar 

  • Carroll, M.C. (1998). The role of complement and complement receptors in induction and regulation of immunity. Annu. Rev. Immunol., 16, 545–568.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, M.W. (2004). T cell mimicry in inflammatory heart disease. Mol. Immunol., 40, 1121–1127.

    Article  CAS  PubMed  Google Scholar 

  • Davoust, N., Nataf, S., Reiman, R., Holers, M.V., Campbell, I.L., and Barnum, S.R. (1999). Central nervous system-targeted expression of the complement inhibitor sCrry prevents experimental allergic encephalomyelitis. J. Immunol., 163, 6551–6556.

    CAS  PubMed  Google Scholar 

  • Delibrias, C.C., Fischer, E., Bismuth, G., and Kazatchkine, M.D. (1992). Expression, molecular association, and functions of C3 complement receptors CR1 (CD35) and CR2 (CD21) on the human T cell line HPB-ALL. J. Immunol., 149, 768–774.

    CAS  PubMed  Google Scholar 

  • Delibrias, C.C., Mouhoub, A., Fischer, E., and Kazatchkine, M.D. (1994). CR1(CD35) and CR2(CD21) complement C3 receptors are expressed on normal human thymocytes and mediate infection of thymocytes with opsonized human immunodeficiency virus. Eur. J. Immunol., 24, 2784–2788.

    CAS  PubMed  Google Scholar 

  • Donath, J. and Landsteiner, K. (1904). Ueber paroxysmale hemoglobinurie. Z. Klin. Med., 58, 173–189.

    Google Scholar 

  • Donermeyer, D.L., Beisel, K.W., Allen, P.M., and Smith, S.C. (1995). Myocarditis-inducing epitope of myosin binds constitutively and stably to I-Ak on antigen-presenting cells in the heart. J. Exp. Med., 182, 1291–1300.

    Article  CAS  PubMed  Google Scholar 

  • Egashira, K. (2003). Molecular mechanisms mediating inflammation in vascular disease: Special reference to monocyte chemoattractant protein-1. Hypertension, 41, 834–841.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, U., Kurrer, M.O., Schmitz, N., Marsch, S.C., Fontana, A., Eugster, H.P., and Kopf, M.U. (2003a). Interleukin-6-deficient mice resist development of autoimmune myocarditis associated with impaired upregulation of complement C3. Circulation, 107, 320–325.

    CAS  PubMed  Google Scholar 

  • Eriksson, U., Kurrer, M.O., Sonderegger, I., and Iezzi, G. (2003b). Activation of dendritic cells through the interleukin 1 receptor 1 is critical for the induction of autoimmune myocarditis. J. Exp. Med., 197, 323–331.

    Article  CAS  PubMed  Google Scholar 

  • Fairweather, D., Afanasyeva, M., and Rose, N.R. (2004). Cellular immunity: A role for cytokines. In A. Doria and P. Pauletto (eds), Handbook of Systemic Autoimmune Diseases. Vol 1: The Heart in Systemic Autoimmune Diseases. Elsevier, Amsterdam. pp. 3–17.

    Google Scholar 

  • Fairweather, D., Frisancho-Kiss, S., Gatewood, S., Njoku, D., Steele, R., Barrett, M., and Rose, N.R. (2004). Mast cells and innate cytokines are associated with susceptibility to autoimmune heart disease following Coxsackievirus B3 infection. Autoimmunity, 37, 131–145.

    Article  CAS  PubMed  Google Scholar 

  • Fairweather, D., Kaya, Z., Shellam, G.R., Lawson, C.M., and Rose, N.R. (2001). From infection to autoimmunity. J. Autoimmun., 16, 175–186.

    Article  CAS  PubMed  Google Scholar 

  • Fairweather, D., Yusung, S., Frisancho, S., Barrett, M., Gatewood, S., Steele, R., and Rose, N.R. (2003). IL-12 receptor beta 1 and toll-like receptor 4 increase IL-1 beta-and IL-18-associated myocarditis and coxsackievirus replication. J. Immunol., 170, 4731–4737.

    CAS  PubMed  Google Scholar 

  • Fearon, D.T. and Carroll, M.C. (2000). Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu. Rev. Immunol., 18, 393–422.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, E., Delibrias, C., and Kazatchkine, M.D. (1991). Expression of CR2 (the C3dg/EBV receptor, CD21) on normal human peripheral blood T lymphocytes. J. Immunol., 146, 865–869.

    CAS  PubMed  Google Scholar 

  • Furuichi, K., Wada, T., Iwata, Y., Kitagawa, K., Kobayashi, K., Hashimoto, H., Ishiwata, Y., Tomosugi, N., Mukaida, N., Matsushima, K., Egashira, K., and Yokoyama, H. (2003). Gene therapy expressing amino-terminal truncated monocyte chemoattractant protein-1 prevents renal ischemia-reperfusion injury. J. Am. Soc. Nephrol., 14, 1066–1071.

    CAS  PubMed  Google Scholar 

  • Fuse, K., Kodama, M., Hanawa, H., Okura, Y., Ito, M., Shiono, T., Maruyama, S., Hirono, S., Kato, K., Watanabe, K., and Aizawa, Y. (2001a). Enhanced expression and production of monocyte chemoattractant protein-1 in myocarditis. Clin. Exp. Immunol., 124, 346–352.

    Article  CAS  PubMed  Google Scholar 

  • Fuse, K., Kodama, M., Aizawa, Y., Yamaura, M., Tanabe, Y., Takahashi, K., Sakai, K., Miida, T., Oda, H., and Higuma, N. (2001b). Th1/Th2 balance alteration in the clinical course of a patient with acute viral myocarditis. Circ. J., 65, 1082–1084.

    CAS  Google Scholar 

  • Gauntt, C.J., Arizpe, H.M., Higdon, A.L., Wood, H.J., Bowers, D.F., Rozek, M.M., and Crawley, R. (1995). Molecular mimicry, anti-coxsackievirus B3 neutralizing monoclonal antibodies, and myocarditis. J. Immunol., 154, 2983–2995.

    CAS  PubMed  Google Scholar 

  • Godeny, E.K. and Gauntt, C.J. (1986). Involvement of natural killer cells in coxsackievirus B3-induced murine myocarditis. J. Immunol., 137, 1695–1702.

    CAS  PubMed  Google Scholar 

  • Godeny, E.K. and Gauntt, C.J. (1987). Murine natural killer cells limit coxsackievirus B3 replication. J. Immunol., 139, 913–918.

    CAS  PubMed  Google Scholar 

  • Guler, M.L., Ligons, D.L., Wang, Y., Bianco, M., Broman, K.W., and Rose, N.R. (2005). Two autoimmune diabetes loci influencing T cell apoptosis control susceptibility to experimental autoimmune myocarditis. J. Immunol., 174, 2167–2173.

    CAS  PubMed  Google Scholar 

  • Hill, S.L. and Rose, N.R. (2001). The transition from viral to autoimmune myocarditis. Autoimmunity, 34, 169–176.

    CAS  PubMed  Google Scholar 

  • Horwitz, M.S., La Cava, A., Fine, C., Rodriguez, E., Ilic, A., and Sarvetnick, N. (2000). Pancreatic expression of interferon-gamma protects mice from lethal coxsackievirus B3 infection and subsequent myocarditis. Nat. Med., 6, 631–632.

    Google Scholar 

  • Ikeda, Y., Yonemitsu, Y., Kataoka, C., Kitamoto, S., Yamaoka, T., Nishida, K., Takeshita, A., Egashira, K., and Sueishi, K. (2002). Anti-monocyte chemoattractant protein-1 gene therapy attenuates pulmonary hypertension in rats. Am. J. Heart Circ. Physiol., 283, H2021–H2028.

    CAS  Google Scholar 

  • Inomata, T., Hanawa, H., Miyanishi, T., Yajima, E., Nakayama, S., Maita, T., Kodama, M., Izumi, T., Shibata, A., and Abo, T. (1995). Localization of porcine cardiac myosin epitopes that induce experimental autoimmune myocarditis. Circ. Res., 76, 726–733.

    CAS  PubMed  Google Scholar 

  • Kaya, Z., Afanasyeva, M., Wang, Y., Dohmen, K.M., Schlichting, J., Tretter, T., Fairweather, D., Holers, V.M., and Rose, N.R. (2001). Contribution of the innate immune system to autoimmune myocarditis: A role for complement. Nat. Immunol., 2, 739–745.

    Article  CAS  PubMed  Google Scholar 

  • Kaya, Z., Dohmen, K.M., Wang, Y., Schlichting, J., Afanasyeva, M., Leuschner, F., and Rose, N.R. (2002). Cutting edge: A critical role for IL-10 in induction of nasal tolerance in experimental autoimmune myocarditis. J. Immunol., 168, 1552–1556.

    CAS  PubMed  Google Scholar 

  • Kaya, Z., Göser, S., Öttl, R., Brodner, A., Dengler, T.J., Egashira, K., Kuziel, W.A., and Katus, H.A. (2005) (in press). Critical role for MCP-1 and MIP-1a in the induction of EAM and anti-MCP-1 gene therapy. FASEB J., abstract.

    Google Scholar 

  • Kaya, Z., Tretter, T., Schlichting, J., Leuschner, F., Afanasyeva, M., Katus, H.A., and Rose, N.R. (2005). Complement receptors regulate lipopolysaccharide-induced T-cell stimulation. Immunology, 114, 493–498.

    Article  CAS  PubMed  Google Scholar 

  • Kerekes, K., Prechl, J., Bajtay, Z., Jozsi, M., and Erdei, A. (1993). A further link between innate and adaptive immunity: C3 deposition on antigen-presenting cells enhances the proliferation of antigen-specific T cells. Int. Immunol., 10, 1923–1930.

    Google Scholar 

  • Kinoshita, T., Takeda, J., Hong, K., Kozono, H., Sakai, H., and Inoue, K. (1988). Monoclonal antibodies to mouse complement receptor type 1 (CR1). Their use in a distribution study showing that mouse erythrocytes and platelets are C 1-negative. J. Immunol., 140, 3066–3072.

    CAS  PubMed  Google Scholar 

  • Kitamoto, S. and Egashira, K. (2003). Anti-monocyte chemoattractant protein-1 gene therapy for cardiovascular diseases. Exp. Rev. Card. Ther., 1, 393–400.

    CAS  Google Scholar 

  • Kohno, K., Takagaki, Y., Nakajima, Y., and Izumi, T. (2000). Advantage of recombinant technology for the identification of cardiac myosin epitope of severe autoimmune myocarditis in Lewis rats. Jpn. Heart J., 41, 67–77.

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy, P.E., Quach, T., Bergese, S., Breckenridge, S., Hensley, J., Altschuld, R., Gordillo, G., Klenotic, S., Orosz, C., and Parker-Thornburg, J. (1998). Myocarditis induced by targeted expression of the MCP-1 gene in murine cardiac muscle. Am. J. Pathol., 152, 101–111.

    CAS  PubMed  Google Scholar 

  • Kuhn, R.J. (1997). Identification and biology of cellular receptors for the coxsackie B viruses group. Curr. Top. Microbiol. Immunol., 223, 209–226.

    CAS  PubMed  Google Scholar 

  • Lane, J.R., Neumann, D.A., Lafond-Walker, A., Herskowitz, A., and Rose, N.R. (1992). Interleukin 1 or tumor necrosis factor can promote coxsackie B3-induced myocarditis in resistant B10. A mice. J. Exp. Med., 175, 1123–1129.

    Article  CAS  PubMed  Google Scholar 

  • Lane, J.R., Neumann, D.A., Lafond-Walker, A., Herskowitz, A., and Rose, N.R. (1993). Role of IL-1 and tumor necrosis factor in coxsackie virus-induced autoimmune myocarditis. J. Immunol., 151, 1682–1690.

    CAS  PubMed  Google Scholar 

  • Lehmann, M.H., Kuhnert, H., Muller, S., and Sigusch, H.H. (1998). Monocyte chemoattractant protein 1 (MCP-1) gene expression in dilated cardiomyopathy. Cytokine, 10, 739–746.

    Article  CAS  PubMed  Google Scholar 

  • Leiden, J.M. (1997). The genetics of dilated cardiomyopathy—emerging clues to the puzzle. New Engl. J. Med., 337, 1080–1081.

    Article  CAS  PubMed  Google Scholar 

  • Liao, L., Sindhwani, R., Leinwand, L., Diamond, B., and Factor, S. (1993). Cardiac alpha-myosin heavy chains differ in their induction of myocarditis. Identification of pathogenic epitopes. J. Clin. Invest., 92, 2877–2882.

    CAS  PubMed  Google Scholar 

  • Liao, L., Sindhwani, R., Rojkind, M., Factor, S., Leinwand, L., and Diamond, B. (1995). Antibody-mediated autoimmune myocarditis depends on genetically determined target organ sensitivity. J. Exp. Med., 181, 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Aitken, K., Kong, Y.Y., Opavsky, M.A., Martino, T., Dawood, F., Wen, W.H., Kozieradzki, I., Bachmaier, K., Straus, D., Mak, T.W., and Penninger, J.M. (2000). The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease. Nat. Med., 6, 429–434.

    CAS  PubMed  Google Scholar 

  • Martino, T.A., Petric, M., Brown, M., Aitken, K., Gauntt, C.J., Richardson, C.D., Chow, L.H., and Liu, P.P. (1998). Cardiovirulent coxsackieviruses and the decay-accelerating factor (CD55) receptor. Virology, 244, 302–314.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, B.P. and Walport, M.J. (1991). Complement deficiency and disease. Immunol. Today, 12, 301–306.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, D.P., Setser, E., Hall, D.G., Schwartz, S.M., Hewitt, T., Klevitsky, R., Osinska, H., Bellgrau, D., Duke, R.C., and Robbins, J. (2000). Proinflammatory consequences of transgenic fas ligand expression in the heart. J. Clin. Invest., 105, 1199–1208.

    CAS  PubMed  Google Scholar 

  • Neu, N., Beisel, K.W., Traystman, M.D., Rose, N.R., and Craig, S.W. (1987a). Autoantibodies specific for the cardiac myosin isoform are found in mice susceptible to coxsackievirus B3-induced myocarditis. J. Immunol., 138, 2488–2492.

    CAS  PubMed  Google Scholar 

  • Neu, N., Rose, N.R., Beisel, K.W., Herskowitz, A., Gurri-Glass, G., and Craig, S.W. (1987b). Cardiac myosin induces myocarditis in genetically predisposed mice. J. Immunol., 139, 3630–3636.

    CAS  PubMed  Google Scholar 

  • Neumann, D.A., Lane, J.R., LaFond-Walker, A., Allen, G.S., Frondoza, C., Herskowitz, A., and Rose, N.R. (1991). Elution of autoantibodies from the hearts of coxsackie-virus-infected mice. Eur. Heart J., 12(Suppl. D), 113–116.

    PubMed  Google Scholar 

  • Neumann, D.A., Lane, J.R., Allen, G.S., Herskowitz, A., and Rose, N.R. (1993). Viral myocarditis leading to cardiomyopathy: Do cytokines contribute to pathogenesis? Clin. Immunol. Immunopathol., 68, 181–190.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura, H., Okazaki, T., Tanaka, Y., Nakatani, K., Hara, M., Matsumori, A., Sasayama, S., Mizoguchi, A., Hiai, H., Minato, N., and Honjo, T. (2001). Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science, 291, 319–322.

    Article  CAS  PubMed  Google Scholar 

  • Okazaki, T., Tanaka, Y., Nishio, R., Mitsuiye, T., Mizoguchi, A., Wang, J., Ishida, M., Hiai, H., Matsumori, A., Minato, N., and Honjo, T. (2003). Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat. Med., 9, 1477–1483.

    Article  CAS  PubMed  Google Scholar 

  • Penninger, J.M., Neu, N., Timms, E., Wallace, V.A., Koh, D.R., Kishihara, K., Pummerer, C., and Mak, T.W. (1993). The induction of experimental autoimmune myocarditis in mice lacking CD4 or CD8 molecules [corrected]. J. Exp. Med., 178, 1837–1842.

    Article  CAS  PubMed  Google Scholar 

  • Pratt, J.R., Basheer, S.A., and Sacks, S.H. (2002). Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat. Med., 8, 582–587.

    Article  CAS  PubMed  Google Scholar 

  • Pummerer, C.L., Luze, K., Grassl, G., Bachmaier, K., Offner, F., Burrell, S.K., Lenz, D.M., Zamborelli, T.J., Penninger, J.M., and Neu, N. (1996). Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J. Clin. Invest., 97, 2057–2062.

    CAS  PubMed  Google Scholar 

  • Rose, N.R., Herskowitz, A., Neumann, D.A., and Neu, N. (1988a). Autoimmune myocarditis: A paradigm of post-infection autoimmune disease. Immunol. Today, 9, 117–119.

    Article  CAS  PubMed  Google Scholar 

  • Rose, N.R., Neumann, D.A., Herskowitz, A., Traystman, M.D., and Beisel, K.W. (1988b). Genetics of susceptibility to viral myocarditis in mice. Pathol. Immunopathol. Res., 7, 266–278.

    CAS  PubMed  Google Scholar 

  • Salazar-Mather, T.P., Orange, J.S., and Biron, C.A. (1998). Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1alpha (MIP-1alpha)-dependent pathways. J. Exp. Med., 187, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, H., Maruyama, S., Yuzawa, Y., Kato, T., Miki, Y., Suzuki, S., Sato, W., Morita, Y., Maruyama, H., Egashira, K., and Matsuo, S. (2003). Anti-monocyte chemoattractant protein-1 gene therapy attenuates renal injury induced by protein-overload proteinuria. J. Am. Soc. Nephrol., 14, 1496–1505.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S.C. and Allen, P.M. (1991). Myosin-induced acute myocarditis is a T cell-mediated disease. J. Immunol., 147, 2141–2147.

    CAS  PubMed  Google Scholar 

  • Wada, T., Furuichi, K., Sakai, N., Iwata, Y., Kitagawa, K., Ishida, Y., Kondo, T., Hashimoto, H., Ishiwata, Y., Mukaida, N., Tomosugi, N., Matsushima, K., Egashira, K., and Yokoyama, H. (2004). Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis. J. Am. Soc. Nephrol., 15, 940–948.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y.C., Herskowitz, A., Gu, L.B., Kanter, K., Lattouf, O., Sell, K.W., and Ahmed-Ansari, A. (1991). Influence of cytokines and immunosuppressive drugs on major histocompatibility complex class I/II expression by human cardiac myocytes in vitro. Hum. Immunol., 31, 123–133.

    Article  CAS  PubMed  Google Scholar 

  • Wegmann, K.W., Zhao, W., Griffin, A.C., and Hickey, W.F. (1994). Identification of myocardiogenic peptides derived from cardiac myosin capable of inducing experimental allergic myocarditis in the Lewis rat. The utility of a class II binding motif in selecting self-reactive peptides. J. Immunol., 153, 892–900.

    CAS  PubMed  Google Scholar 

  • Zwaka, T.P., Manolov, D., Ozdemir, C., Marx, N., Kaya, Z., Kochs, M., Hoher, M., Hombach, V., and Torzewski, J. (2002). Complement and dilated cardiomyopathy: A role of sublytic terminal complement complex-induced tumor necrosis factor-alpha synthesis in cardiac myocytes. Am. J. Pathol., 161, 449–457.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kaya, Z., Rose, N.R. (2005). Innate Immunity in Experimental Autoimmune Myocarditis. In: Zouali, M. (eds) Molecular Autoimmunity. Springer, Boston, MA. https://doi.org/10.1007/0-387-24534-0_1

Download citation

Publish with us

Policies and ethics