Skip to main content

A Thermodynamic Guide to Affinity Optimization of Drug Candidates

  • Chapter
Proteomics and Protein-Protein Interactions

Part of the book series: Protein Reviews ((PRON,volume 3))

Abstract

Acommon starting point in drug development is the identification through screening or rational design of compounds that bind or exhibit some inhibitory activity against their intended targets. Often, those compounds bind to their targets with micromolar and sometimes weaker affinities. To become effective drugs, the binding affinities of those compounds need to be optimized by three or more orders of magnitude. This task is not a trivial one if one considers that it needs to be done while satisfying several stringent constraints, e.g., the molecular mass cannot substantially exceed 500 Da in order for the molecule to be orally bioavailable; the compound needs to exhibit appropriate target selectivity, appropriate membrane permeability and sufficient water solubility. Furthermore, the compound needs to exhibit an adequate pharmacokinetic profile, no toxicity, and so forth. These constraints considerably reduce the universe of chemical functionalities that can be utilized to achieve the optimization goals. In addition, at the thermodynamic level, chemical modifications that improve the binding enthalpy are usually accompanied by compensating entropy changes and vice versa, resulting in little or no gain in binding affinity. The identification of functionalities that carry the lowest enthalpy/entropy compensation is critical for affinity optimization. Since the binding affinity is the product of enthalpic and entropic contributions, it is possible for various ligands to have the same affinity but vastly different enthalpy/entropy profiles. While in theory, extremely high affinity can be achieved with arbitrary enthalpy/entropy combinations, the experience with HIV-1 protease inhibitors indicates that a strong favorable binding enthalpy is necessary. Furthermore, enthalpically optimized inhibitors have been shown to respond better to target mutations associated with drug resistance or naturally occurring polymorphisms without losing selectivity towards unwanted targets. It is evident that high affinity inhibitors characterized by strong favorable binding enthalpies are highly desirable. Consequently, the development of accurate rules with the ability to guide the affinity and enthalpic optimization of drug candidates is extremely important. This is the subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, B.M., and Murphy, K.P. (1996). Evaluation of linked protonation effects in protein binding using isothermal titration calorimetry. Biophys. J. 71:2049–2055.

    Article  PubMed  CAS  Google Scholar 

  • Cabani, S., Gianni, P., Mollica, V., and Lepori, L. (1981). Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution. J. Solut. Chem. 10:563–595.

    Article  CAS  Google Scholar 

  • Edgcomb, S.P., and Murphy, K.P. (2000). Structural energetics of protein folding and binding. Curr. Opin. Biotechnol. 11:62–66.

    Article  PubMed  CAS  Google Scholar 

  • Eftink, M.R., Anusiem, A.C., and Biltonen, R.L. (1983). Enthalpy-entropy compensation and heat capacity changes for protein-ligand interactions: general thermodynamic models and data for the binding of nucleotides to ribonuclease A. Biochemistry 22:3884–3896.

    Article  PubMed  CAS  Google Scholar 

  • Freire, E. (2002). Designing drugs against heterogeneous targets. Nat. Biotechnol. 20:15–16.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, J., and Freire, E. (1995). Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin. J. Mol. Biol. 252:337–350.

    Article  PubMed  CAS  Google Scholar 

  • Henriques, D.A., Ladbury, J.E., and Jackson, R.M. (2000). Comparison of binding energetics of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization. Protein Sci. 9:1975–1985.

    PubMed  CAS  Google Scholar 

  • Hilser, V.J., Gomez, J., and Freire, E. (1996). The enthalpy change in protein folding and binding. Refinement of parameters for structure based calculations. Proteins 26:123–133.

    Article  PubMed  CAS  Google Scholar 

  • Lipinski, C.A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44:235–249.

    Article  PubMed  CAS  Google Scholar 

  • Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3–25.

    Article  CAS  Google Scholar 

  • Lumry, R., and Rajender, S. (1970). Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers 9:1125–1227.

    Article  PubMed  CAS  Google Scholar 

  • Luque, I., and Freire, E. (1998). A system for the structure-based prediction of binding affinities and molecular design of peptide ligands. Methods Enzymol. 295:100–127.

    Article  PubMed  CAS  Google Scholar 

  • Luque, I., and Freire, E. (2000). The structural stabilty of binding sites. Consequences for binding affinity and cooperativity. Proteins 4:63–71.

    Article  PubMed  Google Scholar 

  • Luque, I., and Freire, E. (2002). Structural parameterization of the binding enthalpy of small ligands. Proteins 49:181–190.

    Article  PubMed  CAS  Google Scholar 

  • Luque, I., Gomez, J., Semo, N., and Freire, E. (1998). Structure-based thermodynamic design of peptide ligands. Application to peptide inhibitors of the aspartic protease endothiapepsin. Proteins 30: 74–85.

    Article  PubMed  CAS  Google Scholar 

  • Makhatadze, G.I., and Privalov, P.L. (1995). Energetics of protein structure. Adv. Protein Chem. 47:307–425.

    PubMed  CAS  Google Scholar 

  • Murphy, K.P., and Gill, S.J. (1991). Solid model compounds and the thermodynamics of protein unfolding. J. Mol. Biol. 222:699–709.

    Article  PubMed  CAS  Google Scholar 

  • Nezami, A., and Freire, E. (2002). The integration of genomic and structural information in the development of high affinity plasmepsin inhibitors. Int. J. Parasitol. 32:1669–1676.

    Article  PubMed  CAS  Google Scholar 

  • Nezami, A., Luque, I., Kimura, T., Kiso, Y., and Freire, E. (2002). Identification and characterization of allophenylnorstatine-based inhibitors of plasmepsin II, an anti-malarial target. Biochemistry 41:2273–2280.

    Article  PubMed  CAS  Google Scholar 

  • Nezami, A., Kimura, T., Hidaka, K., Kiso, A., Liu, J., Kiso, Y., Goldberg, D.A., and Freire, E. (2003). High affinity inhibition of a family of Plasmodium falciparum proteases by a designed adaptive inhibitor. Biochemistry 42:8459–8464.

    Article  PubMed  CAS  Google Scholar 

  • Ohtaka, H., Velazquez-Campoy, A., Xie, D., and Freire, E. (2002). Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of amprenavir and TMC-126 to wild type and drugresistant mutants of the HIV-1 protease. Protein Sci. 11:1908–1916.

    Article  PubMed  CAS  Google Scholar 

  • Ohtaka, H., Schon, A., and Freire, E. (2003). Multi drug-resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations. Biochemistry 42:13659–13666.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, A.D., and Murphy, K.P. (1997). Protein structure and the energetics of protein stability. Chem. Rev. 97:1251–1267.

    Article  PubMed  CAS  Google Scholar 

  • Todd, M.J., Luque, I., Velazquez-Campoy, A., and Freire, E. (2000). The thermodynamic basis of resistance to HIV-1 protease inhibition. Calorimetric analysis of the V82F/I84V active site resistant mutant. Biochemistry 39:11876–11883.

    Article  PubMed  CAS  Google Scholar 

  • Velazquez-Campoy, A., and Freire, E. (2001). Incorporating target heterogeneity in drug design. J. Cell. Biochem. S37:82–88.

    Article  CAS  Google Scholar 

  • Velazquez-Campoy, A., Luque, I., Todd, M.J., Milutinovich, M., Kiso, Y., and Freire, E. (2000a). Thermodynamic dissection of the binding energetics of KNI-272, a powerful HIV-1 protease inhibitor. Protein Sci. 9:1801–1809.

    PubMed  CAS  Google Scholar 

  • Velazquez-Campoy, A., Todd, M.J., and Freire, E. (2000b). HIV-1 protease inhibitors: enthalpic versus entropic optimization of the binding affinity. Biochemistry 39:2201–2207.

    Article  PubMed  CAS  Google Scholar 

  • Velazquez-Campoy, A., Kiso, Y., and Freire, E. (2001a). The binding energetics of first and second generation HIV-1 protease inhibitors: implications for drug design. Arch. Biochim. Biophys. 390:169–175.

    Article  CAS  Google Scholar 

  • Velazquez-Campoy, A., Luque, I., and Freire, E. (2001b). The application of thermodynamic methods in drug design. Thermochim. Acta 380:217–227.

    Article  CAS  Google Scholar 

  • Velazquez-Campoy, A., Luque, I., and Freire, E. (2001c). The use of isothermal titration calorimetry in drug design: applications to high affinity binding and protonation/deprotonation coupling. Netsu Sokutei 28:68–73.

    Google Scholar 

  • Velazquez-Campoy, A., Todd, M.J., Vega, S., and Freire, E. (2001d). Catalytic efficiency and vitality of HIV-1 proteases from African viral subtypes. Proc. Natl. Acad. Sci. USA 98:6062–6067.

    Article  PubMed  CAS  Google Scholar 

  • Velazquez-Campoy, A., Vega, S., and Freire, E. (2002). Amplification of the effects of drug-resistance mutations by background polymorphisms in HIV-1 protease from African subtypes. Biochemistry 41:8613–8619.

    Article  PubMed  CAS  Google Scholar 

  • Velazquez-Campoy, A., Muzammil, S., Ohtaka, H., Schon, A., Vega, S., and Freire, E. (2003a). Structural and thermodynamic basis of resistance to HIV-1 protease inhibition: implications for inhibitor design. Curr. Drug Targets Infect. Disord. 3:311–328.

    Article  PubMed  CAS  Google Scholar 

  • Velazquez-Campoy, A., Vega, S., Fleming, E., Bacha, U., Sayed, Y., Dirr, H.W., and Freire, E. (2003b). Protease inhibition in African subtypes of HIV-1. AIDS Rev. 5:165–171.

    PubMed  Google Scholar 

  • Wiseman, T., Williston, S., Brandts, J.F., and Lin, L.N. (1989). Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179:131–135.

    Article  PubMed  CAS  Google Scholar 

  • Xie, D., and Freire, E. (1994). Molecular basis of cooperativity in protein folding. V. Thermodynamic and structural conditions for the stabilization of compact denatured states. Proteins Struct. Funct. Genet. 19:291–301.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura, K., Kato, R., Kavlick, M.F., Nguyen, A., Maroun, V., Maeda, K., Hussain, K.A., Ghosh, A.K., Gulnik, S.V., Erickson, J.W., and Mitsuya, H. (2002). A potent human immunodeficiency virus type 1 protease inhibitor, UIC-94003 (TMC-126), and the selection of a novel (A28S) mutation in the protease active site. J. Virology 76:1349–1358.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Freire, E. (2005). A Thermodynamic Guide to Affinity Optimization of Drug Candidates. In: Waksman, G. (eds) Proteomics and Protein-Protein Interactions. Protein Reviews, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-387-24532-4_13

Download citation

Publish with us

Policies and ethics