Skip to main content

The Saalschütz Chain Reactions and Multiple q-Series Transformations

  • Chapter
Theory and Applications of Special Functions

Part of the book series: Developments in Mathematics ((DEVM,volume 13))

Abstract

By recursive use of the q-Saalschütz summation formula, we investigate further the Saalschütz chain reactions introduced by the author in (Chu, 2002). Some general series transformations which express basic terminating series in terms of finite multiple sums will be established. As applications, we derive by means of Jackson's 6ϕ5-series identity three transformations including one due to Andrews (1975). These transformations yield further a number of multiple Rogers-Ramanujan identities, whose research was initiated and developed mainly by Andrews and Bressoud from the middle of seventieth up to now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, A. K., Andrews, G. E., and Bressoud, D. M. (1987). The Bailey lattice. J. Indian Math. Soc. (N.S.), 51:57–73.

    MathSciNet  Google Scholar 

  • Agarwal, A. K. and Bressoud, D. M. (1989). Lattice paths and multiple basic hyper-geometric series. Pacific J. Math., 136:209–228.

    MathSciNet  Google Scholar 

  • Andrews, G. E. (1974). An analytic generalization of the Rogers-Ramanujan identities for odd moduli. Proc. Nat. Acad. Sci. U.S.A., 71:4082–4085.

    MATH  MathSciNet  Google Scholar 

  • Andrews, G. E. (1975). Problems and prospects for basic hypergeometric functions. In Askey, R., editor, The Theory and Applications of Special Functions, pages 191–224. Academic Press, New York.

    Google Scholar 

  • Andrews, G. E. (1976). The Theory of Partitions, volume 2 of Encyclopedia of Math. and Appl. Cambridge University Press, Cambridge.

    Google Scholar 

  • Andrews, G. E. (1979a). Connection coefficient problems and partitions. In Relations between combinatorics and other parts of mathematics (Proc. Sympos. Pure Math., Ohio State Univ., Columbus, Ohio, 1978), Proc. Sympos. Pure Math., XXXIV, pages 1–24. Amer. Math. Soc., Providence, RI.

    Google Scholar 

  • Andrews, G. E. (1979b). Partitions and Durfee dissection. Amer. J. Math., 101(3):735–742.

    MATH  MathSciNet  Google Scholar 

  • Andrews, G. E. (1981). Multiple q-series identities. Houston J. Math., 7(1):11–22.

    MATH  MathSciNet  Google Scholar 

  • Andrews, G. E. (1984). Multiple series Rogers-Ramanujan type identities. Pacific J. Math., 114(2):267–283.

    MATH  MathSciNet  Google Scholar 

  • Andrews, G. E. (1986). q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, volume 66 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC.

    Google Scholar 

  • Bailey, W. N. (1935). Generalized Hypergeometric Series. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bailey, W. N. (1947). Some identities in combinatory analysis. Proc. London Math. Soc. (2), 49:421–435.

    MATH  MathSciNet  Google Scholar 

  • Bailey, W. N. (1948). Identities of the Rogers-Ramanujan type. Proc. London Math. Soc. (2), 50:1–10.

    MATH  MathSciNet  Google Scholar 

  • Bressoud, D. M. (1980a). Analytic and combinatorial generalizations of the Rogers-Ramanujan identities. Mem. Amer. Math. Soc., 24(227):54.

    MathSciNet  Google Scholar 

  • Bressoud, D. M. (1980b). An analytic generalization of the Rogers-Ramanujan identities with interpretation. Quart. J. Math. Oxford Ser. 2, 31:385–399.

    MATH  MathSciNet  Google Scholar 

  • Bressoud, D. M. (1981). On partitions, orthogonal polynomials and the expansion of certain infinite products. Proc. London Math. Soc. (3), 42:478–500.

    MATH  MathSciNet  Google Scholar 

  • Bressoud, D. M. (1988). The Bailey lattice: an introduction. In Ramanujan Revisited (Urbana-Champaign, Ill., 1987), pages 57–67. Academic Press, Boston, MA.

    Google Scholar 

  • Bressoud, D. M. (1989). Lattice paths and the Rogers-Ramanujan identities. In Number theory, Madras 1987, volume 1395 of Lecture Notes in Mathematics, pages 140–172. Springer-Verlag, Berlin-New York.

    Google Scholar 

  • Bressoud, D. M., Ismail, M., and Stanton, D. (2000). Change of base in Bailey pairs. Ramanujan J., 4(4):435–453.

    Article  MathSciNet  Google Scholar 

  • Chu, W. (2002). The Saalschütz chain reactions and bilateral basic hypergeometric series. Constructive Approx., 18:579–598.

    Article  MATH  Google Scholar 

  • Garrett, T., Ismail, M., and Stanton, D. (1999). Variants of the Rogers-Ramanujan identities. Adv. Appl. Math., 23(3):274–299.

    Article  MathSciNet  Google Scholar 

  • Gessel, I. and Stanton, D. (1983). Applications of q-Lagrange inversion to basic hypergeometric series. Trans. Amer. Math. Soc., 277:173–201.

    Article  MathSciNet  Google Scholar 

  • Milne, S. C. (1980). A multiple series transformation of the very well poised 4+2kΨ2k+4. Pacific J. Math., 91:419–430.

    MATH  MathSciNet  Google Scholar 

  • Schilling, A. and Warnaar, S. O. (1997). A higher-level Bailey lemma: Proof and application. Preprint.

    Google Scholar 

  • Slater, L. J. (1951). A new proof of Rogers' transformations of infinite series. Proc. London Math. Soc. (2), 53:460–475.

    MATH  MathSciNet  Google Scholar 

  • Slater, L. J. (1952). Further identities of the Rogers-Ramanujan type. Proc. London Math. Soc. (2), 54:147–167.

    MATH  MathSciNet  Google Scholar 

  • Slater, L. J. (1966). Generalized Hypergeometric Functions. Cambridge University Press, Cambridge.

    Google Scholar 

  • Stanton, D. (2001). The Bailey-Rogers-Ramanujan group, volume 291 of Contemporary Mathematics, pages 55–70. Amer. Math. Soc., Providence, RI.

    Google Scholar 

  • Stembridge, J. R. (1990). Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities. Trans. Amer. Math. Soc., 319:469–498.

    Article  MATH  MathSciNet  Google Scholar 

  • Warnaar, S. O. (2001). The generalized Borwein conjecture I: The Burge transform, volume 291 of Contemporary Mathematics, pages 243–267. Amer. Math. Soc., Providence, RI.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Wenchang, C.H.U. (2005). The Saalschütz Chain Reactions and Multiple q-Series Transformations. In: Ismail, M.E., Koelink, E. (eds) Theory and Applications of Special Functions. Developments in Mathematics, vol 13. Springer, Boston, MA. https://doi.org/10.1007/0-387-24233-3_6

Download citation

Publish with us

Policies and ethics