Skip to main content

a-Gaussian Polynomials and Finite Rogers-Ramanujan Identities

  • Chapter
Theory and Applications of Special Functions

Part of the book series: Developments in Mathematics ((DEVM,volume 13))

Abstract

Classical Gaussian polynomials are generalized to two variable polynomials. The first half of the paper is devoted to a full account of this extension and its inherent properties. The final part of the paper considers the role of these polynomials in finite identities of the Rogers-Ramanujan type.

Partially supported by National Science Foundation Grant DMS9206993.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, G. E. (1974). Problem 74–12. SIAM Review, 16.

    Google Scholar 

  • Andrews, G. E. (1976). The Theory of Partitions. Addison-Wesley, Reading. (Reissued: Cambridge University Press, Cambridge, 1984, 1998).

    MATH  Google Scholar 

  • Andrews, G. E. (1989). On the proofs of the Rogers-Ramanujan identities. In Stanton, D., editor, q-Series and Partitions, volume 18 of IMA Volume in Math. and Its Appl., pages 1–14. Springer, New York.

    Google Scholar 

  • Andrews, G. E. (1990). q-trinominial coefficients and Rogers-Ramanujan type identities. In Berndt B., et al., editor, Analytic Number Theory, Progr. Math., pages 1–11. Birkhauser, Boston.

    Google Scholar 

  • Andrews, G. E. (1993). On Ramanujan's empirical calculation for the Rogers-Ramanujan identities. In A tribute to Emil Grosswald: number theory and related analysis, volume 143 of Contemp. Math., pages 27–35. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Andrews, G. E. (1995). On a conjecture of Peter Borwein. J. Symbolic Computation, 20:487–501.

    Article  MATH  Google Scholar 

  • Andrews, G. E. and Berkovich, A. (2002). The WP-Bailey tree and its implications. J. London Math. Soc. (2), 66(3):529–549.

    MathSciNet  MATH  Google Scholar 

  • Andrews, G. E., Bressoud, D. M., Baxter, R. J., Burge, W., Forrester, P. J., and Viennot, G. (1987). Partitions with prescribed hook differences. Europ. J. Math., 8:341–350.

    MathSciNet  MATH  Google Scholar 

  • Bailey, W. N. (1949). Identities of the Rogers-Ramanujan type. Proc. London Math. Soc. (2), 50:1–10.

    MathSciNet  Google Scholar 

  • Bressoud, D. M. (1981a). Solution to problem 74–12. SIAM Review, 23:101–104.

    Article  Google Scholar 

  • Bressoud, D. M. (1981b). Some identities for terminating q-series. Math. Proc. Camb. Phil. Soc., 89:211–223.

    Article  MATH  MathSciNet  Google Scholar 

  • Paule, P. (1994). Short and easy computer proofs of the Rogers-Ramanujan identities and identities of similar type. Electronic J. Combin., 1:Research Paper 10, approx. 9 pp. (electronic).

    Google Scholar 

  • Schur, I. (1917). Ein beitrag zur additiven zahlentheorie. In S.-B. Press. Akad. Wiss., Phys.-Math. Klasse, pages 302–321. (Reprinted: Gesamm, Abhand., Vol. 2, Springer, Berlin, 1973, pp. 117–136).

    Google Scholar 

  • Stembridge, J. (1990). Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities. Trans. Amer. Math. Soc., 319:469–498.

    Article  MATH  MathSciNet  Google Scholar 

  • Warnaar, S. 0. (2002). Partial sum analogs of the Rogers-Ramanujan identities. J. Comb. Th. (A), 99:143–161.

    Article  MATH  MathSciNet  Google Scholar 

  • Watson, G. N. (1929). A new proof of the Rogers-Ramanujan identities. J. London Math. Soc., 4:4–9.

    Article  Google Scholar 

  • Zeilberger (a.k.a. S. B. Ekhad and S. Tre), D. (1990). A purely verification proof of the first Rogers-Ramanujan identity. J. Comb. Th. (A), 54(2):309–311.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Andrews, G.E. (2005). a-Gaussian Polynomials and Finite Rogers-Ramanujan Identities. In: Ismail, M.E., Koelink, E. (eds) Theory and Applications of Special Functions. Developments in Mathematics, vol 13. Springer, Boston, MA. https://doi.org/10.1007/0-387-24233-3_3

Download citation

Publish with us

Policies and ethics