Skip to main content

Askey-Wilson Functions and Quantum Groups

  • Chapter
Theory and Applications of Special Functions

Part of the book series: Developments in Mathematics ((DEVM,volume 13))

Abstract

Eigenfunctions of the Askey-Wilson second order q-difference operator for 0 < q < 1 and |q| = 1 are constructed as formal matrix coefficients of the principal series representation of the quantized universal enveloping algebra U q (\(\mathfrak{s}\mathfrak{l}\)(2, ℂ)). The eigenfunctions are given in integral form. We show that for 0 < {tiq} < 1 the resulting eigenfunction can be rewritten as a very-well-poised 8ϕ7-series, and reduces for special parameter values to a natural elliptic analogue of the cosine kernel.

Supported by the Royal Netherlands Academy of Arts and Sciences (KNAW).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Askey, R. and Wilson, J. A. (1985). Some basic hypergeometric polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc., 54(319).

    Google Scholar 

  • Cherednik, I. (1997). Difference Macdonald-Mehta conjecture. Internat. Math. Res. Notices, 10:449–467.

    Article  MATH  MathSciNet  Google Scholar 

  • Faddeev, L. (2000). Modular double of a quantum group. In Conférence Moshé Flato 1999, Vol. I (Dijon), volume 21 of Math Phys. Stud., pages 149–156. Kluwer Acad. Publ., Dordrecht.

    Google Scholar 

  • Gasper, G. and Rahman, M. (1990). Basic hypergeometric series, volume 35 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Ismail, M. and Rahman, M. (1991). The associated Askey-Wilson polynomials. Trans. Amer. Math. Soc., 328:201–237.

    Article  MathSciNet  MATH  Google Scholar 

  • Kharchev, S., Lebedev, D., and Semenov-Tian-Shansky, M. (2002). Unitary representations of u q(sl(2,R)), the modular double and the multiparticle q-deformed Toda chains. Comm. Math. Phys., 225(3):573–609.

    Article  MathSciNet  MATH  Google Scholar 

  • Koelink, E. (1996). Askey-Wilson polynomials and the quantum SU(2) group: survey and applications. Acta Appl. Math., 44(3):295–352.

    MATH  MathSciNet  Google Scholar 

  • Koelink, E. and Rosengren, H. (2002). Transmutation kernels for the little q-Jacobi function transform. Rocky Mountain J. Math., 32(2):703–738. Conference on Special Functions (Tempe, AZ, 2000).

    Article  MathSciNet  MATH  Google Scholar 

  • Koelink, E. and Stokman, J. V. (2001a). The Askey-Wilson function transform. Internat. Math. Res. Notices, 22:1203–1227.

    Article  MathSciNet  Google Scholar 

  • Koelink, E. and Stokman, J. V. (2001b). Fourier transforms on the quantum SU(1, 1) group. Publ. Res. Inst. Math. Sci., 37(4):621–715. With an appendix by M. Rahman.

    MathSciNet  MATH  Google Scholar 

  • Koornwinder, T. H. (1984). Jacobi functions and analysis on noncompact semisimple Lie groups. In Special Functions: Group Theoretical Aspects and Applications, Math. Appl., pages 1–85. Reidel, Dordrecht.

    Google Scholar 

  • Koornwinder, T. H. (1993). Askey-Wilson polynomials as zonal spherical functions on the su(2) quantum group. SIAM J. Math. Anal., 24:795–813.

    Article  MATH  MathSciNet  Google Scholar 

  • Nishizawa, M. (2001). q-special functions with |q| = 1 and their application to discrete integrable systems. J. Phys. A, 34(48):10639–10646. Symmetries and Integrability of Difference Equations (Tokyo, 2000).

    Article  MATH  MathSciNet  Google Scholar 

  • Nishizawa, M. and Ueno, K. (2001). Integral solutions of hypergeometric q-difference systems with |q| = 1. In Physics and Combinatorics 1999 (Nagoya), pages 273–286. World Sci. Publishing, River Edge, NJ.

    Google Scholar 

  • Noumi, M. and Mimachi, K. (1992). Askey-Wilson polynomials as spherical functions on SUq(2). In Quantum Groups (Leningrad, 1990), volume 1510 of Lecture Notes in Math., pages 98–103. Springer, Berlin.

    Google Scholar 

  • Noumi, M. and Stokman, J. V. (2000). Askey-Wilson polynomials: an affine Hecke algebra approach. Preprint.

    Google Scholar 

  • Rosengren, H. (2000). A new quantum algebraic interpretation of the Askey-Wilson polynomials. In q-Series from a Contemporary Perspective (South Hadley, MA, 1998), volume 254 of Contemp. Math., pages 371–394. Amer. Math. Soc., Providence, RI.

    Google Scholar 

  • Ruijsenaars, S. N. M. (1997). First order analytic difference equations and integrable quantum systems. J. Math. Phys., 38(2):1069–1146.

    Article  MATH  MathSciNet  Google Scholar 

  • Ruijsenaars, S. N. M. (1999). A generalized hypergeometric function satisfying four analytic difference equations of Askey-Wilson type. Comm. Math. Phys., 206(3):639–690.

    Article  MATH  MathSciNet  Google Scholar 

  • Ruijsenaars, S. N. M. (2001). Special functions defined by analytic difference equations. In Bustoz, J., Ismail, M. E. H., and Suslov, S. K., editors, Special Functions 2000: Current Perspective and Future Directions, volume 30 of NATO Science Series, II. Math., Phys. and Chem., pages 281–333. Kluwer Acad. Publ.

    Google Scholar 

  • Stokman, J. V. (2001). Difference Fourier transforms for nonreduced root systems. Selecta Math. (N.S.). To appear. Available electronically: math.QA/0111221.

    Google Scholar 

  • Stokman, J. V. (2002). An expansion formula for the Askey-Wilson function. J. Approx. Theory, 114:308–342.

    Article  MATH  MathSciNet  Google Scholar 

  • Suslov, S. K. (1997). Some orthogonal very well poised 8ϕ7-functions. J. Phys. A, 30:5877–5885.

    Article  MATH  MathSciNet  Google Scholar 

  • Suslov, S. K. (2002). Some orthogonal very-well-poised 8ϕ7-functions that generalize Askey-Wilson polynomials. Ramanujan J., 5(2):183–218.

    Article  MathSciNet  Google Scholar 

  • Van der Jeugt, J. and Jagannathan, R. (1998). Realizations of su(1, 1) and u q(su(1, 1)) and generating functions for orthogonal polynomials. J. Math. Phys., 39(9):5062–5078.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Stokman, J.V. (2005). Askey-Wilson Functions and Quantum Groups. In: Ismail, M.E., Koelink, E. (eds) Theory and Applications of Special Functions. Developments in Mathematics, vol 13. Springer, Boston, MA. https://doi.org/10.1007/0-387-24233-3_19

Download citation

Publish with us

Policies and ethics