Skip to main content

Continuous Hahn Functions as Clebsch-Gordan Coefficients

  • Chapter
Theory and Applications of Special Functions

Part of the book series: Developments in Mathematics ((DEVM,volume 13))

Abstract

An explicit bilinear generating function for Meixner-Pollaczek polynomials is proved. This formula involves continuous dual Hahn polynomials, Meixner-Pollaczek functions, and non-polynomial 3 F 2-hypergeometric functions that we consider as continuous Hahn functions. An integral transform pair with continuous Hahn functions as kernels is also proved. These results have an interpretation for the tensor product decomposition of a positive and a negative discrete series representation of su(1, 1) with respect to hyperbolic bases, where the Clebsch-Gordan coefficients are continuous Hahn functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, G. E., Askey, R., and Roy, R. (1999). Special Functions, volume 71 of Encycl. Math. Appl. Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

  • Bailey, W. N. (1972). Generalized Hypergeometric Series. Hafner, New York.

    Google Scholar 

  • Basu, D. and Wolf, K. B. (1983). The Clebsch-Gordan coefficients of the three-dimensianal Lorentz algebra in the parabolic basis. J. Math. Phys., 24:478–500.

    Article  MathSciNet  MATH  Google Scholar 

  • Braaksma, B. L. J. and Meulenbeld, B. (1967). Integral transforms with generalized Legendre functions as kernels. Compositio Math., 18:235–287.

    MathSciNet  MATH  Google Scholar 

  • de Jeu, M. (2003). Determinate multidimensional measures, the extended Carleman theorem and quasi-analytic weights. Ann. Prob., 31:1205–1227. Available electronically: math.CA/0111019.

    Article  MATH  Google Scholar 

  • Engliš, M., Hille, S. C., Peetre, J., Rosengren, H., and Zhang, G. (2000). A new kind of Hankel-Toeplitz type operator connected with the complementary series. Arab J. Math. Sci., 6:49–80.

    MathSciNet  MATH  Google Scholar 

  • Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G. (1953). Higher Transcendental Functions, volume I, II. McGraw-Hill, New York-Toronto-London.

    Google Scholar 

  • Götze, F. (1965). Verallgemeinerung einer integraltransformation von Mehler-Fock durch den von Kuipers und Meulenbeld eingefürten Kern p km,n (z). Indag. Math., 27:396–404.

    Google Scholar 

  • Granovskii, Y. I. and Zhedanov, A. S. (1993). New construction of 3nj-symbols. J. Phys. A: Math. Gen., 26:4339–4344.

    Article  MathSciNet  Google Scholar 

  • Groenevelt, W. (2003). Laguerre functions and representations of su(1, 1). Indag. Math. To appear.

    Google Scholar 

  • Groenevelt, W. and Koelink, E. (2002). Meixner functions and polynomials related to Lie algebra representations. J. Phys. A: Math. Gen., 35:65–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Ismail, M. E. H. and Stanton, D. (2002). q-integral and moment representations for q-orthogonal polynomials. Canad. J. Math., 54:709–735.

    MathSciNet  MATH  Google Scholar 

  • Koekoek, R. and Swarttouw, R. F. (1998). The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Technical Report 98-17, Technical University Delft, Delft.

    Google Scholar 

  • Koelink, E. Spectral theory and special functions. In Marcelldn, F., Van Assche, W., and Alvarez-Nordarse, R., editors, Proceedings of the 2000 SIAG OP-SF Summer School on Orthogonal Polynomials and Special Functions (Laredo, Spain). Nova Science Publishers, Hauppauge, NY. Available electronically: math.CA/0107036.

    Google Scholar 

  • Koelink, H. T. and Van der Jeugt, J. (1998). Convolutions for orthogonal polynomials from Lie and quantum algebra representations. SIAM J. Math. Anal., 29:794–822.

    Article  MathSciNet  MATH  Google Scholar 

  • Koornwinder, T. H. (1984). Jacobi functions and analysis on noncompact semisimple Lie groups. In Askey, R. A., Koornwinder, T. H., and Schempp, W., editors, Special functions: Group Theoretical Aspects and Applications, Math. Appl., pages 1–85. D. Reidel Publ. Comp., Dordrecht.

    Google Scholar 

  • Koornwinder, T. H. (1988). Group theoretic interpretations of Askey's scheme of hypergeometric orthogonal polynomials. In Alfaro, et al., M., editor, Orthogonal Polynomials and Their Applications, volume 1329 of Lecture Notes Math., pages 46–72. Springer-Verlag, Berlin.

    Google Scholar 

  • Masson, D. R. and Repka, J. (1991). Spectral theory of Jacobi matrices in l2(Z) and the su(1, 1) Lie algebra. SIAM J. Math. Anal., 22:1131–1146.

    Article  MathSciNet  MATH  Google Scholar 

  • Mukunda, N. and Radhakrishnan, B. (1974). Clebsch-Gordan problem and coefficients for the three-dimensional Lorentz group in a continuous basis. II. J. Math. Phys., 15:1332–1342.

    Article  Google Scholar 

  • Neretin, Y. A. (1986). Discrete occurrences of representations of the complementary series in tensor products of unitary representations. Funktsional. Anal. i Prilozhen., 20:79–80. English translation: Funct. Anal. Appl. 20 (1986), 68–70.

    Article  MATH  MathSciNet  Google Scholar 

  • Olver, F. W. J. (1974). Asymptotics and Special Functions. Academic Press, New York.

    Google Scholar 

  • Paris, R. B. and Kaminski, D. (2001). Asymptotics and Mellin-Barnes Integrals, volume 85 of Encycl. Math. Appl. Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

  • Schmüdgen, K. (1990). Unbounded Operator Algebras and Representation Theory, volume 37 of Operator theory: Advances and Applications. Birkhüuser Verlag, Basel.

    Google Scholar 

  • Slater, L. J. (1960). Confluent Hypergeometric Functions. Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

  • Slater, L. J. (1966). Generalized Hypergeometric Functions. Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

  • Van der Jeugt, J. (1997). Coupling coefficients for Lie algebra representations and addition formulas for special functions. J. Math. Phys., 38:2728–2740.

    Article  MATH  MathSciNet  Google Scholar 

  • Vilenkin, N. J. and Klimyk, A. U. (1991). Representations of Lie Groups and Special Functions, volume 1. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Whittaker, E. T. and Watson, G. N. (1963). A Course of Modern Analysis. Cambridge Univ. Press, Cambridge, fourth edition.

    MATH  Google Scholar 

  • Wilson, J. A. (1980). Some hypergeometric orthogonal polynomials. SIAM J. Math. Anal., 11:690–701

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Groenevelt, W., Koelink, E., Rosengren, H. (2005). Continuous Hahn Functions as Clebsch-Gordan Coefficients. In: Ismail, M.E., Koelink, E. (eds) Theory and Applications of Special Functions. Developments in Mathematics, vol 13. Springer, Boston, MA. https://doi.org/10.1007/0-387-24233-3_11

Download citation

Publish with us

Policies and ethics