Skip to main content

c-Myc Deregulation Promotes a Complex Network of Genomic Instability

  • Chapter
Hormonal Carcinogenesis IV
  • 623 Accesses

Conclusions

c-Myc is a versatile protein that has many different functions. With respect to genomic instability, it affects many endpoints that include gene amplification, translocation, deletions, insertions, long-range rearrangements, DNA breakage, and point mutations. This overall promotion of genomic instability suggests that c-Myc may have a central role in destabilizing the genome. We propose that c-Myc is a structural modifier of the genome and an important initiator and progressor molecule in neoplastic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Takaha N, Hawkins AL, Griffin CA, et al (2002) High mobility group protein I(Y): a candidate architectural protein for chromosomal rearrangements in prostate cancer cells. Cancer Res 62:647–651.

    PubMed  CAS  Google Scholar 

  2. Duesberg PH, Vogt PK (1979) Avian acute leukemia viruses MC29 and MH2 share specific RNA sequences: evidence for a second class of transforming genes. Proc Natl Acad Sci USA 76:1633–1637.

    Article  PubMed  CAS  Google Scholar 

  3. Bister K, Duesberg PH (1980) Genetic structure of avian acute leukemia viruses. Cold Spring Harbor Symp Quant Biol 44:801–822.

    PubMed  CAS  Google Scholar 

  4. Hayward WS, Neel BG, Astrin S (1981) Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290:475–480.

    Article  PubMed  CAS  Google Scholar 

  5. Payne GS, Bishop JM, Varmus HE (1981) Multiple rearrangements in viral DNA and an activated host oncogene (c-myc) in bursal lymphomas. Nature 295:209–214.

    Article  Google Scholar 

  6. Della-Favera R, Bregni M, Erikson J, et al (1982) Human c-Myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt’s lymphoma cells. Proc Natl Acad Sci USA 79:7824–782.

    Article  Google Scholar 

  7. Pear WS, Wahlstrom G, Nelson SF, et al (1988) 6;7 chromosomal translocation in spontaneously arising rat immunocytomas: evidence for c-myc breakpoint clustering and correlation between isotype expression and the c-myc target. Mol Cell Biol 8:441–451.

    PubMed  CAS  Google Scholar 

  8. Ohno S, Babonits M, Wiener F, et al (1979) Nonrandom chromosome changes involving the Ig gene-carrying chromosomes 12 and 6 in pristane-induced mouse plasmacytomas. Cell 18:1001–1007.

    Article  PubMed  CAS  Google Scholar 

  9. Shen-Ong GL, Keath EJ, Piccoli SP, et al (1982) Novel myc oncogene RNA from abortive immunoglobulin gene recombination in mouse plasmacytomas. Cell 31:443–452.

    Article  PubMed  CAS  Google Scholar 

  10. Wiener, F, Kuschak, TI, Ohno, S, et al (1999) Deregulated expression of c-Myc in a translocation-negative plasmacytoma on extrachromosomal elements that carry IgH and myc genes. Proc Natl Acad Sci USA 96:13967–13972.

    Article  PubMed  CAS  Google Scholar 

  11. D’Cruz CM, Gunther EJ, Boxer RB, et al (2001) c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 7:235–239.

    Article  PubMed  CAS  Google Scholar 

  12. Stewart TA, Pattengale PK, Leder P (1984) Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38:627–637.

    Article  PubMed  CAS  Google Scholar 

  13. Fan L, Iyer J, Zhu S, et al (2001) Inhibition of N-myc expression and induction of apoptosis by iron chelation in human neuroblastoma cells. Cancer Res 61:1073–1079.

    PubMed  CAS  Google Scholar 

  14. Ngan HY, Cheung AN, Liu SS, et al (2001) Abnormal expression of pan-ras, c-myc and tp53 in squamous cell carcinoma of cervix: correlation with HPV and prognosis. Oncol Rep 8:557–561.

    PubMed  CAS  Google Scholar 

  15. Kraehn GM, Utikal J, Udart M, et al (2001) Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases. Brit J Cancer 84:72–79.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang X, Lee C, Ng PY, et al (2000) Prostatic neoplasia in transgenic mice with prostate-directed overexpression of the c-myc oncoprotein. Prostate 43:278–285.

    Article  PubMed  CAS  Google Scholar 

  17. Jain M, Arvanitis C, Chu K, et al (2002) Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297:102–104.

    Article  PubMed  CAS  Google Scholar 

  18. Adams JM, Harris AW, Pinkert CA, et al (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318:533–538.

    Article  PubMed  CAS  Google Scholar 

  19. Karlsson A, Giuriato S, Tang F, et al (2003) Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood 101:2797–803.

    Article  PubMed  CAS  Google Scholar 

  20. Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18:3004–3016.

    Article  PubMed  CAS  Google Scholar 

  21. Von Hoff DD, Needham-Van Devanter DR, Yucel Y, et al (1998) Amplified human MYC oncogenes localized to replicating submicroscopic circular DNA molecules. Proc Natl Acad Sci USA 85:4804–4808.

    Article  Google Scholar 

  22. Von Hoff DD, McGill JR, Forseth BJ, et al (1992) Elimination of extrachromosomally amplified MYC genes from human tumor cells reduces their tumorigenicity. Proc Natl Acad Sci USA 89:8165–8169.

    Article  Google Scholar 

  23. Eckhardt SG, Dai A, Davidson KK, et al (1994) Induction of differentiation in HL60 cells by the reduction of extrachromosomally amplified c-myc. Proc Natl Acad Sci USA 91:6674–6678.

    Article  PubMed  CAS  Google Scholar 

  24. Marcu KB, Bossone SA, Patel AJ (1992) myc function and regulation. Annual Rev Biochem 61:809–860.

    Article  CAS  Google Scholar 

  25. Potter M, Marcu KB (1997) The c-myc story: where we’ve been, where we seem to be going. Curr Top Microbiol Immunol 224:1–17.

    PubMed  CAS  Google Scholar 

  26. Mai S (1994) Overexpression of c-myc precedes amplification of the gene encoding dihydrofolate reductase, Gene 148:253–260.

    Article  PubMed  CAS  Google Scholar 

  27. Mai S, Hanley-Hyde J, Fluri M (1996) c-Myc overexpression associated DHFR gene amplification in hamster, rat, mouse and human cell lines. Oncogene 12:277–288.

    PubMed  CAS  Google Scholar 

  28. Potter M, Wiener F (1992) Plasmacytomagenesis in mice: model of neoplastic development dependent upon chromosomal translocations. Carcinogenesis 13:1681–1697.

    PubMed  CAS  Google Scholar 

  29. Taylor C, Mai S (1998) c-Myc-associated genomic instability of the dihydrofolate reductase locus in vivo. Cancer Detect Prev 22:350–356.

    Article  PubMed  CAS  Google Scholar 

  30. Kuschak TI, Taylor C, McMillan-Ward E et al (1999) The ribonucleotide reductase R2 gene is a non-transcribed target of c-Myc-induced genomic instability. Gene 238:351–365.

    Article  PubMed  CAS  Google Scholar 

  31. Mai S, Hanley-Hyde J, Rainey GJ, et al (1999) Chromosomal and extrachromosomal instability of the cyclin D2 gene is induced by Myc overexpression. Neoplasia 1:241–252.

    Article  PubMed  CAS  Google Scholar 

  32. Smith GM, Dushniky LG, Symons SJ, et al (2001) c-Myc inducible chromosomal and extrachromosomal amplification of R2 and ODC. AACR Proceedings 42:902.

    Google Scholar 

  33. Fukasawa K, Wiener F, Vande Woude GF, et al (1997) Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 15:1295–1302.

    Article  PubMed  CAS  Google Scholar 

  34. Smith G, Taylor-Kashton C, Dushnicky L, et al (2003) c-Myc-Induced Extrachromosomal Elements Carry Active Chromatin. Neoplasia 5:110–120

    PubMed  CAS  Google Scholar 

  35. Mai S, Fluri M, Siwarski D et al (1996) Genomic instability in MycER activated Rat1A-MycER cells. Chromosome Res 4:365–371.

    Article  PubMed  CAS  Google Scholar 

  36. Felsher DW, Bishop JM (1999) Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci USA 96:3940–3944.

    Article  PubMed  CAS  Google Scholar 

  37. Rockwood LD, Torrey TA, Kim JS, et al (2002) Genomic instability in mouse Burkitt lymphoma is dominated by illegitimate genetic recombinations, not point mutations. Oncogene 21:7235–7240.

    Article  PubMed  CAS  Google Scholar 

  38. Davis CD, Dacquel EJ, Schut HA, et al (1996) In vivo mutagenicity and DNA adduct levels of heterocyclic amines in Muta mice and c-myc/lacZ double transgenic mice. Mutat Res 356:287–296.

    PubMed  CAS  Google Scholar 

  39. Partlin MM, Homer E, Robinson H, et al (2003) Interactions of the DNA mismatch repair proteins MLH1 and MSH2 with c-MYC and MAX. Oncogene 22:819–825.

    Article  CAS  Google Scholar 

  40. Fest T, Mougey V, Dalstein V, et al (2002) c-MYC overexpression in Ba/F3 cells simultaneously elicits genomic instability and apoptosis. Oncogene 21:2981–2990.

    Article  PubMed  CAS  Google Scholar 

  41. Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4:199–207.

    Article  PubMed  CAS  Google Scholar 

  42. Vafa O, Wade M, Kern S, et al (2002) c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9:1031–1044.

    Article  PubMed  CAS  Google Scholar 

  43. Pipiras E, Coquelle A, Bieth A, et al (1998) Interstitial deletions and intrachromosomal amplification initiated from a double-strand break targeted to a mammalian chromosome. EMBO J 17:325–333.

    Article  PubMed  CAS  Google Scholar 

  44. Moynahan ME, Jasin M (1997) Loss of heterozygosity induced by a chromosomal double-strand break. Proc Natl Acad Sci USA 94:8988–8993.

    Article  PubMed  CAS  Google Scholar 

  45. Richardson C, Jasin M (2000) Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405:697–700.

    Article  PubMed  CAS  Google Scholar 

  46. Hamlin JL, Ma C (1990) The mammalian dihydrofolate reductase locus. Biochim Biophys Acta 1087:107–125.

    PubMed  CAS  Google Scholar 

  47. Stark GR (1993) Regulation and mechanisms of mammalian gene amplification. Adv Cancer Res 61:87–113.

    Article  PubMed  CAS  Google Scholar 

  48. Spradling AC (1981) The organization and amplification of two chromosomal domains containing Drosophila chorion genes. Cell 27:193–201.

    Article  PubMed  CAS  Google Scholar 

  49. Carroll SM, DeRose ML, Gaudray P, et al (1988) Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol Cell Biol 8:1525–1533.

    PubMed  CAS  Google Scholar 

  50. Morris T, Thacker J (1993) Formation of large deletions by illegitimate recombination in the HPRT gene of primary human fibroblasts. Proc Natl Acad Sci USA 90:1392–1396.

    Article  PubMed  CAS  Google Scholar 

  51. Butler DK, Yasuda LE, Yao MC (1996) Induction of large DNA palindrome formation in yeast: implications for gene amplification and genome stability in eukaryotes. Cell 87:1115–1122.

    Article  PubMed  CAS  Google Scholar 

  52. Ma C, Martin S, Trask B, et al (1993) Sister chromatid fusion initiates amplification of the dihydrofolate reductase gene in Chinese hamster cells. Genes Dev 7:605–620.

    PubMed  CAS  Google Scholar 

  53. Poupon M-F, Smith KA, Chernova OB, et al (1996) Inefficient growth arrest in response to dNTP starvation stimulates gene amplification through bridge-breakage-fusion cycles. Mol Biol Cell 7:345–354.

    PubMed  CAS  Google Scholar 

  54. Kuschak TI, Kuschak BC, Taylor CL, et al (2002) c-Myc initiates illegitimate replication of the ribonucleotide reductase R2 gene. Oncogene 21:909–920.

    Article  PubMed  CAS  Google Scholar 

  55. Chernova OB, Chernov MV, Ishizaka Y, et al (1998) MYC abrogates p53-mediated cell cycle arrest in N-(phosphonacetyl)-L-aspartate-treated cells, permitting CAD gene amplification. Mol Cell Biol 18:536–545.

    PubMed  CAS  Google Scholar 

  56. Lane DP (1992) Cancer, p53, guardian of the genome. Nature 358:15–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Mai, S., Guffei, A., Fest, T., Mushinski, J.F. (2005). c-Myc Deregulation Promotes a Complex Network of Genomic Instability. In: Li, J.J., Li, S.A., Llombart-Bosch, A. (eds) Hormonal Carcinogenesis IV. Springer, Boston, MA. https://doi.org/10.1007/0-387-23761-5_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-23761-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23783-1

  • Online ISBN: 978-0-387-23761-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics