Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 76))

Abstract

In this chapter we introduce the notion of convexity and generalized convexity including invexity for vector valued functions. Some characterizations of these functions are provided. Then we study vector problems involving generalized convex functions. The major aspects of this study concern the existence of efficient solutions, optimality conditions using contingent derivatives and approximate Jacobians, scalarization for convex and quasiconvex problems, and topological properties of efficient solution sets of generalized convex problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrow, K., Barankin, E. and Blackwell, D., Admissible points of convex sets, in Contributions to the Theory of Games, eds. Kuhn H. W. and Tucker F. H., Princeton University Press, Princeton, NJ., 1953, pp. 87–92.

    Google Scholar 

  2. Avriel, M., Diewert, W.E., Schaible, S. and Zang, I., Generalized Concavity, Plenum Publishing Corporation, New York, 1988.

    Google Scholar 

  3. Aubin, J.P. and Frankowska, H., Set-Valued Analysis, Birkhauser, Boston, 1990.

    Google Scholar 

  4. Benoist, J., Connectedness of the efficient set for strictly quasiconcave sets, J. Optimization Theory and Applications, 96 (1998), pp. 627–654.

    MATH  MathSciNet  Google Scholar 

  5. Benoist, J., Contractibility of the efficient set in strictly quasiconcave vector maximization, J. Optimization Theory and Applications, 110 (2001), pp. 325–336.

    MATH  MathSciNet  Google Scholar 

  6. Benoist, J. and Popovici, N., Contractibility of the efficient frontier of three-dimensional simply-shaded sets, J. Optimization Theory and Applications, 111 (2001), pp. 81–116.

    MathSciNet  Google Scholar 

  7. Benoist, J., Borwein, J.M., and Popovici, N., A characterization of quasiconvex vector-valued functions, Proceedings of the American Mathematical Society 131 (2003), pp. 1109–1113.

    Article  MathSciNet  Google Scholar 

  8. Borwein, J.M., The geometry of Pareto efficiency over cones, Mathematische Operationsforschung und Statistik, Serie Optimization, 11 (1980), pp. 235–248.

    MATH  MathSciNet  Google Scholar 

  9. Borwein, J.M., and Zhuang, D., Supper efficiency in vector optimization, Transactions of the American Mathematical Society, 339 (1993), pp. 105–122.

    MathSciNet  Google Scholar 

  10. Cambini, A., and Martein, L., Generalized concavity and optimality conditions in vector and scalar optimization, in “Generalized Convexity”, eds. Komlosi S., Rapcsak T. and Schaiblez S., Lecture Notes on Economics and Mathematical Systems 405, Springer-Verlag, Berlin, 1994, pp. 337–357.

    Google Scholar 

  11. Cambini, A., Luc, D.T. and Martein, L., Order preserving transformations and applications, J. Optimization Theory and Applications 118 (2003), pp. 275–293.

    MathSciNet  Google Scholar 

  12. Cambini, R., Some new classes of generalized convex vector valued functions, Optimization 36 (1996), pp. 11–24.

    MATH  MathSciNet  Google Scholar 

  13. Cambini, R., and Komlosi, S., On the scalarization of pseudoconcavity and pseudomonotonicity concepts for vector valued functions, in “Generalized Convexity, Generalized Monotonicity” (Proceedings of the Fifth Symposium on Generalized Convexity, Luminy, June 1996), eds. Crouzeix J.P., Martinez-Legas J.E. and Volle M., Kluwer Academic Publishers, London, 1998, pp. 277–290.

    Google Scholar 

  14. Cambini, R., and Komlosi, S., On polar generalized monotonicity in vector optimization, Optimization 47 (2000), pp. 111–121.

    MathSciNet  Google Scholar 

  15. Chen, G.Y. and Jahn, J., Optimality conditions for set-valued optimization problems, Mathematical Methods of Operations Research, 48 (1998), pp. 187–200.

    MathSciNet  Google Scholar 

  16. Choo, E.U. and Atkins, D.R., Connectedness in multiple linearfractional programming, Management Science, 29 (1983), pp. 250–255.

    MathSciNet  Google Scholar 

  17. Clarke, F.H., Optimization and Nonsmooth Analysis, John Wiley and Sons, New York 1983.

    Google Scholar 

  18. Choo, E.U., Schaible, S. and Chew, S., Connectedness of the efficient set in three-objective quasiconcave programming, Cahiers du Centre d’Etudes de Recherche Operationnelle 27 (1985), pp. 213–220.

    MathSciNet  Google Scholar 

  19. Corley, H.W., An existence result for maximization with respect to cones, J. Optimization Theorey and Applications 31 (1980), 277–281.

    MATH  MathSciNet  Google Scholar 

  20. Craven, B.D., Nonsmooth multiobjective programming, Numerical Functional Analysis and Optimization, 10 (1989), pp. 49–64.

    MATH  MathSciNet  Google Scholar 

  21. Craven, B.D., Nonsmooth multiobjective programming, Numerical Functional Analysis and Optimization, 10 (1989), pp. 49–64.

    MATH  MathSciNet  Google Scholar 

  22. Daniilidis, A., Arrow-Barankin-Blackwell theorems and related results in cone duality: a survey, Optimization (Namur, 1998), Lecture Notes in Economics and Mathematical Systems, 481, Springer Verlag, Berlin, 2000, pp. 119–131.

    Google Scholar 

  23. Daniilidis, A., Hadjisavvas, N. and Schaible, S., Connectedness of the efficient set for three-objective quasiconcave maximization Problems, J. Optimization Theory and Applications, 93 (1997), pp. 517–524.

    MathSciNet  Google Scholar 

  24. Durousseau, C., Contribution à l’analyse convexe et à l’optimization vectorielle, PhD. Thesis, Faculté des Sciences, Université de Limoges, 1999.

    Google Scholar 

  25. Giannessi, F., Maestroeni, G. and Pellegrini, L., On the theory of vector optimization and variational inequalities. Image space analysis and separation, in Vector Variational Inequalities and Vector Equilibria, Ed. F. Giannessi, Kluwer Academic Publishers, London, pp. 153–216, 2000.

    Google Scholar 

  26. Gong, X.H., Connectedness of the efficient solution set of a convex vector optimization problem in a normed space, Nonlinear Analysis 23 (1994), pp. 1105–1114.

    MATH  MathSciNet  Google Scholar 

  27. Guerraggio, A., Molho, E. and Zaffaroni, A., On the notion of proper efficiency in vector optimization, J. Optimization Theory and Applications, 82 (1994), pp. 1–21.

    MathSciNet  Google Scholar 

  28. Ha, T.X.D., Existence and density results for proper efficiency in cone compact sets, Optimization, 111 (2001), pp. 173–194.

    Google Scholar 

  29. Hanson, M.A., On sufficiency of the Kuhn-Tucker conditions, J. Mathematical Analysis and Applications, 80 (1981), pp. 545–550.

    MATH  MathSciNet  Google Scholar 

  30. Henig, M.I., Proper efficiency with respect to cones, J. Optimization Theory and Applications, 36 (1982), pp. 387–407.

    MATH  MathSciNet  Google Scholar 

  31. Huy, N.Q., Phuong, T.D., and Yen, N.D., On the contractibility of the efficient and weakly efficient sets in R2, in “Equilibrium Problems and Variational Models”, Maugeri A. (Ed.), Kluwer, 2001.

    Google Scholar 

  32. Ioffe, A.D., Nonsmooth analysis: Differential calculus of nondifferentiable mappings, Transactions of the American Mathematical Society, 266 (1981), pp. 1–56.

    MATH  MathSciNet  Google Scholar 

  33. Isac, G., Pareto optimization in infinite dimensional spaces: The importance of nuclear cones, J. Math. Anal. Appl., 182 (1994), 393–404.

    Article  MATH  MathSciNet  Google Scholar 

  34. Jahn, J., Mathematical Vector Optimization in Partially Ordered Linear Spaces, Peter Lang, Frankfurt, 1986.

    Google Scholar 

  35. Jahn, J., A generalization of a theorem of Arrow, Barankin and Blackwell, SIAM J. Control and Optimization, 26 (1988), pp. 999–1005.

    MATH  MathSciNet  Google Scholar 

  36. Jeyakumar, V. and Luc, D.T., Approximate Jacobian matrices for nonsmooth continuous maps and C1-optimization, SIAM Journal on Control and Optimization 36 (1998), pp. 1815–1832.

    Article  MathSciNet  Google Scholar 

  37. Jeyakumar, V. and Luc, D.T., Nonsmooth calculus, minimality and monotonicity of convexificators, J. Optimization Theory and Applications, 101 (1999), pp. 599–621.

    MathSciNet  Google Scholar 

  38. Jeyakumar, V. and Luc, D.T., Open mapping theorem using unbounded generalized Jacobians, Nonlinear Analysis, 50 (2002), pp. 647–663.

    Article  MathSciNet  Google Scholar 

  39. Jeyakumar, V., Luc, D.T. and Schaible, S., Characterizations of generalized monotone nonsmooth continuous maps using approximate Jacobians, J. Convex Analysis, 5 (1998), pp. 119–132.

    MathSciNet  Google Scholar 

  40. Luc, D.T., On scalarizing method in vector optimization, in Large-Scale Modelling and Interactive Decision Analysis, Proceedings, Eisenach 1985, Eds. Fandel, Grauer, Kurzahanski and Wiersbicki, LNEMS 273 (1986), pp. 46–51.

    Google Scholar 

  41. Luc, D.T., Structure of the efficient point set, Proc. Amer. Math. Soc. 95 (1985), pp. 433–440.

    MATH  MathSciNet  Google Scholar 

  42. Luc, D.T., Theory of Vector Optimization, Lecture Notes on Economics and Mathematical Systems 319, Springer-Verlag, Germany, 1989.

    Google Scholar 

  43. Luc, D.T., On three concepts of quasiconvexity in vector optimization, Acta Math. Vietnamica, 15 (1990), pp. 3–9.

    MATH  Google Scholar 

  44. Luc, D.T., Continuity properties of cone-convex functions, Acta Math.Hungar., 55 (1990), pp. 57–61.

    Article  MATH  MathSciNet  Google Scholar 

  45. Luc, D.T., Contractibility of efficient point setrs in normed spaces, J. Nonlinear Analysis and Applications 15 (1990), pp.3–9.; and Corrigendum, idem., 38 (1999), pp. 547.

    MATH  Google Scholar 

  46. Luc, D.T., Contingent derivative of set-valued maps and applications to vector optimization, Mathematical Programming, 50 (1991), pp. 99–111.

    Article  MATH  MathSciNet  Google Scholar 

  47. Luc, D.T., On generalized convex nonsmooth functions, Bulletin of the Austral. Math.Soc., 49 (1994), pp. 139–149.

    MATH  MathSciNet  Google Scholar 

  48. Luc, D.T., On the properly efficient points of nonconvex sets, European Journal of Operational Research, 86 (1995), pp. 332–336.

    MATH  Google Scholar 

  49. Luc, D.T., Generalized monotone maps and bifunctions, Acta Math. Vietnamica, 21 (1996), pp. 213–253.

    MATH  Google Scholar 

  50. Luc, D.T., A multiplier rule for multiobjective programming problems with continuous data, SIAM J. Optimization, 13 (2002), pp. 168–178.

    Article  MATH  MathSciNet  Google Scholar 

  51. Luc, D.T. and Malivert, C., Invex optimization problems, Bulletin of the Australian Mathematical Society, 46 (1992), pp. 47–66.

    MathSciNet  Google Scholar 

  52. Luc, D.T., and Schaible, S., Efficiency and generalized concavity, J. Optimization Theory and Applications, 94 (1997), pp. 147–153.

    MathSciNet  Google Scholar 

  53. Luc, D.T., and Swaminathan, S., A characterization of convex functions, J.Nonlinear Analysis: TMA, 20 (1993), pp. 697–701.

    MathSciNet  Google Scholar 

  54. Luc, D.T., Tan, N.X., and Tinh, P.N., Convex vector functions and their subdifferential, Acta Mathematica Vietnamica, 23 (1998), pp. 107–127.

    MathSciNet  Google Scholar 

  55. Luc, D.T., and Volle, M., Level sets, infimal convolution and level addition, J. Optimization Theory and Application, 94 (1997), pp. 695–714.

    MathSciNet  Google Scholar 

  56. Makarov, E.K. and Rachkovski, N.N., Density theorems for generalized Henig proper efficiency, J. Optimization Theory and Applications, 91 (1996), pp. 419–437.

    MathSciNet  Google Scholar 

  57. Makarov, E.K. and Rachkovski, N.N., Efficient sets of convex compacta are arcwise connected, J. Optimization Theory and Applications, 110 (2001), pp. 159–172.

    MathSciNet  Google Scholar 

  58. Makarov, E.K., Rachkovski, N.N. and SONG, W., Arcwise connectedness of closed point sets, J. Mathematical Analysis and Applications, 247 (2000), pp. 377–383.

    MathSciNet  Google Scholar 

  59. Peleg, B., Topological properties of the efficient point set, Proceedings Amer. Math. Soc, 35 (1972), pp. 531–536.

    MATH  MathSciNet  Google Scholar 

  60. Penot, J.-P., Differentiability of relations and differential stability of perturbed optimization problems, SIAM J. Control and Optimization, 22 (1984), pp. 529–551.

    Article  MATH  MathSciNet  Google Scholar 

  61. Petschke, M., On a theorem of Arrow, Barankin and Blackwell, SIAM J. Control and Optimization, 28 (1990), pp. 395–401.

    Article  MATH  MathSciNet  Google Scholar 

  62. Popovici, N., Contribution à l’ optimization vectorielle, PhD. Thesis, Faculté des Sciences, Université de Limoges, 1995.

    Google Scholar 

  63. Postolica, V., New existence results for efficient points in locally convex spaces ordered by supernormal cones, J. Global Optimization, 3 (1993), pp. 233–243.

    Article  MATH  MathSciNet  Google Scholar 

  64. Sach, P.H., Yen, N.D. and Craven, B.D., Generalized invexity and duality theories with multifunctions, Numerical Functional Analysis and Optimization, 15 (1994), pp. 131–153.

    MathSciNet  Google Scholar 

  65. Schaible, S., Bicriteria quasiconvex programs, Cahiers du Centre d’Etudes de Recherche Opérationnelle, 25 (1983), pp. 93–101.

    MATH  MathSciNet  Google Scholar 

  66. Sterna-Karwat, A., On existence of cone-maximal points in real topological linear spaces, Israel J.Math. 54 (1986), pp. 33–41.

    MATH  MathSciNet  Google Scholar 

  67. Sun, E.J., On the connectedness of the efficient set for strictly quasiconvex vector minimization problem, J. Optimization Theory and Applications, 89 (1996), pp. 475–581.

    MATH  Google Scholar 

  68. Tinh, P.N., Luc, D.T., and Tan, N.X., Subdifferential characterization of quasiconvex and convex vector functions, Vietnam J. Mathematics, 26 (1998), pp. 53–69.

    Google Scholar 

  69. Valadier, M., Sous-différentiabilité de fonctions convexes à valeurs dans un espace vectoriel ordonné, Math. Scand., 30 (1972), pp. 65–74.

    MATH  MathSciNet  Google Scholar 

  70. Warga, J., Fat homeomorphisms and unbounded derivate containers, J. Mathematical Analysis and Applications, 81 (1981), pp. 545–560.

    MATH  MathSciNet  Google Scholar 

  71. Yen, N.D. and Phuong, T.D., Connectedness and stability of the solution set in linear fractional vector optimization inequalities, In: Vector Variational Inequalities and Vector Equilibria. Mathematical Theorems, Giannessi F., Ed., Kluwer Academic Publishers, Dordrecht, 2000, pp. 479–489.

    Google Scholar 

  72. Zalinescu, C., and Sonntag, Y., Comparison of existence results for efficient points, J. Optimization Theory and Applications, 105 (2000), pp. 161–188.

    MathSciNet  Google Scholar 

  73. Zowe, J., Subdifferentiability of convex functions with values in an ordered vector space, Math. Scandi., 34 (1974), pp. 69–83.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Dinh The, L. (2005). Generalized Convexity in Vector Optimization. In: Hadjisavvas, N., Komlósi, S., Schaible, S. (eds) Handbook of Generalized Convexity and Generalized Monotonicity. Nonconvex Optimization and Its Applications, vol 76. Springer, New York, NY. https://doi.org/10.1007/0-387-23393-8_5

Download citation

Publish with us

Policies and ethics