Skip to main content

Vibrational Echo Correlation Spectroscopy

A New Probe of Hydrogen Bond Dynamics in Water and Methanol

  • Chapter
Femtosecond Laser Spectroscopy

Abstract

Multidimensional vibrational echo correlation spectroscopy with full phase resolution is used to measure hydrogen bond dynamics in water and methanol. The OD hydroxyl stretches of methanol-OD oligomers in CCl4 and HOD inH2O are studied using the shortest mid-IR pulses (< 45 fs, < 4 cycles of light) produced to date. The pulses have sufficient spectral bandwidth to span the very broad (> 400 cm-1) spectrum of the 0-1 and 1-2 vibrational transitions. Hydrogen bond population dynamics are extricated with exceptional detail in MeOD oligomers because the different hydrogen-bonded species are spectrally distinct. The experimental results along with detailed calculations indicate the strongest hydrogen bonds are selectively broken through a non-equilibrium relaxation pathway following vibrational relaxation of the hydroxyl stretch. Following hydrogen bond breaking, the broken MeOD oligomers retain a detailed structural memory of the prior intact hydrogen bond network. The correlation spectra are also a sensitive probe of the structural fluctuations in water and provide a stringent test of water models that are widely used in simulations of aqueous systems. The analysis of the 2D band shapes demonstrates that different hydrogen-bonded species are subject to distinct (wavelength-dependent) ultrafast (∼ 100 fs) local fluctuations and essentially identical slower (0.4 ps and ∼ 2 ps) structural rearrangements. Observation of wavelength-dependent dynamics demonstrates that standard theoretical approaches assuming Gaussian fluctuations cannot adequately describe water dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Gaffney, P. H. Davis, I. R. Piletic, N. E. Levinger and M. D. Fayer, J. Phys. Chem. A 106, 12012 (2002).

    Article  Google Scholar 

  2. I. R. Piletic, K. J. Gaffney and M. D. Fayer, J. Chem. Phys, 119,423 (2003).

    Article  ADS  Google Scholar 

  3. J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic, A. Goun and M. D. Fayer, Chem. Phys. Lett. 374, 362 (2003).

    Article  ADS  Google Scholar 

  4. J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic, A. Goun and M. D. Fayer, Phys. Rev. Lett. 91, 237402 (2003).

    Article  ADS  Google Scholar 

  5. J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic and M. D. Fayer, J. Chem. Phys. 119, 12981 (2003).

    Article  ADS  Google Scholar 

  6. J. Stenger, D. Madsen, P. Hamm, E. T. J. Nibbering and T. Elsaesser, J. Phys. Chem. A. 106, 2341 (2002).

    Article  Google Scholar 

  7. J. Stenger, D. Madsen, P. Hamm, E. T. J. Nibbering and T. Elsaesser, Phys. Rev. Lett. 87,027401(2001).

    Article  ADS  Google Scholar 

  8. S. Yeremenko, M. S. Pshenichnikov and D. A. Wiersma, Chem. Phys. Lett. 369,107 (2003).

    Article  ADS  Google Scholar 

  9. H. Graener, T. Q. Ye and A. Laubereau, J. Chem. Phys. 90, 3413 (1989).

    Article  ADS  Google Scholar 

  10. R. Laenen, C. Rausch and A. Laubereau, Phys. Rev. Lett. 80, 2622 (1998); S. Bratos, G. M. Gale, G. Gallot, F. Hache, N. Lascoux and J. C. Leicknam, Phys. Rev. E 61, 5211 (2000).

    Article  ADS  Google Scholar 

  11. G. M. Gale, G. Gallot, F. Hache, N. Lascoux, S. Bratos and J. C. Leicknam, Phys. Rev. Lett. 82, 1068 (1999).

    Article  ADS  Google Scholar 

  12. H. J. Bakker, H. K. Neinhuys, G. Gallot, N. Lascoux, G. M. Gale, J. C. Leicknam and S. Bratos, J. Chem. Phys. 116, 2592 (2002); M. F. Kropman, H.-K. Nienhuys, S. Woutersen and H. J. Bakker, J. Phys. Chem. A 105, 4622 (2001).

    Article  ADS  Google Scholar 

  13. C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff and P. L. Geissler, Science 301, 1698(2003).

    Article  ADS  ISI  Google Scholar 

  14. C. P. Lawrence and J. L. Skinner, J. Chem. Phys. 117, 5827 (2002).

    Article  ADS  Google Scholar 

  15. C. P. Lawrence and J. L. Skinner, J. Chem. Phys. 117, 8847 (2002).

    Article  ADS  Google Scholar 

  16. C. P. Lawrence and J. L. Skinner, J. Chem. Phys. 118, 264 (2003).

    Article  ADS  Google Scholar 

  17. C. P. Lawrence and J. L. Skinner, Chem. Phys. Lett. 369, 472 (2003).

    Article  ADS  Google Scholar 

  18. M. Haughney, M. Ferrario and I. R. McDonald, J. Phys. Chem. 91,4934 (1987); M. Matsumoto and K. E. Gubbins, J. Chem. Phys. 93,1981 (1990); D. M. zum Buschenfelde and A. Staib, Chem. Phys. 236, 253 (1998).

    Article  Google Scholar 

  19. A. Staib, J. Chem. Phys. 108,4554 (1998).

    Article  ADS  Google Scholar 

  20. A. Luzar, J. Chem. Phys. 113, 10663 (2000).

    Article  ADS  Google Scholar 

  21. R. Rey, K. B. Møller and J. T. Hynes, J. Phys. Chem. A 106, 11993 (2002).

    Article  Google Scholar 

  22. G. C. Pimentel and A. L. McClellan, The Hydrogen Bond. (W. H. Freeman and Co., San Francisco, 1960).

    Google Scholar 

  23. U. Liddel and E. D. Becker, Spectrochima Acta 10, 70 (1957).

    Article  ADS  Google Scholar 

  24. A. Novak, in Structure and Bonding (Ed. J. D. Dunitz, Springer-Verlag, Berlin, 1974), Vol. 18, pp. 177.

    Google Scholar 

  25. M. Falk and T. A. Ford, Canadian J. Chem. 44, 1699 (1966).

    Article  Google Scholar 

  26. J. B. Asbury, T. Steinel and M. D. Fayer, J. Phys. Chem. B. 108, in press (2004).

    Google Scholar 

  27. J. B. Asbury, T. Steinel and M. D. Fayer, J. Luminescence 107, 271 (2004).

    Article  ADS  Google Scholar 

  28. J. B. Asbury, T. Steinel, C. Stromberg, S. A. Corcelli, C. P. Lawrence, J. L. Skinner and M. D. Fayer, J. Phys.Chem. A 108, 1107 (2004).

    Article  Google Scholar 

  29. D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, M. D. Fayer, T. I. Smith and H. A. Schwettman, Phys. Rev. Lett. 70, 2718 (1993); A. Tokmakoff and M. D. Fayer, J. Chem. Phys. 102, 2810 (1995); K. D. Rector, J. R. Engholm, C. W. Rella, J. R. Hill, D. D. Dlott and M. D. Fayer, J. Phys. Chem. A 103, 2381 (1999); P. Hamm, M. Lim and R. M. Hochstrasser, Phys. Rev. Lett. 81, 5326 (1998); M. T. Zanni, M. C. Asplund and R. M. Hochstrasser, J. Chem. Phys. 114,4579 (2001); K. A. Merchant, D. E. Thompson and M. D. Fayer, Phys. Rev. Lett. 86, 3899 (2001); O. Golonzka, M. Khalil, N. Demirdoven and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001); R. Venkatramani and S. Mukamel, J. Chem. Phys. 117, 11089 (2002).

    Article  ADS  Google Scholar 

  30. S. Mukamel, Ann. Rev. Phys. Chem. 51, 691 (2000).

    Article  ADS  Google Scholar 

  31. R. R. Ernst, G. Bodenhausen and A. Wokaun, Nuclear Magnetic Resonance in One and Two Dimensions. (Oxford University Press, Oxford, 1987).

    Google Scholar 

  32. M. Khalil, N. Demirdöven and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003); M. Khalil, N. Demirdöven and A. Tokmakoff, J. Phys. Chem. A 107, 5258 (2003).

    Article  ADS  Google Scholar 

  33. M. C. R. Symons and V. K. Thomas, J. Chem. Soc., Faraday Trans. 1 77, 1883 (1981); O. Kristiansson, J. Mol. Struct. 477, 105 (1999).

    Article  Google Scholar 

  34. J. E. Bertie and S. L. Zhang, J. Mol. Struct. 413-414, 333 (1997).

    Article  ADS  Google Scholar 

  35. R. Laenen and C. Rausch, J. Chem. Phys. 106, 8974 (1997).

    Article  ADS  Google Scholar 

  36. S. Mukamel, Principles of Nonlinear Optical Spectroscopy. (Oxford University Press, New York, 1995).

    Google Scholar 

  37. L. K. Iwaki and D. D. Dlott, J. Phys. Chem. A 104, 9101 (2000).

    Article  Google Scholar 

  38. M. Berg, C. A. Walsh, L. R. Narasimhan, K. A. Littau and M. D. Fayer, J. Chem. Phys. 88, 1564 (1988); K. A. Littau, Y. S. Bai and M. D. Fayer, Chem. Phys. Lett. 159, 1 (1989); A. Tokmakoff, R. S. Urdahl, D. Zimdars, A. S. Kwok, R. S. Francis and M. D. Fayer, J. Chem. Phys. 102, 3919 (1995); A. Tokmakoff, J. Phys. Chem. A 104, 4247 (2000); J. D. Hybl, Y. Christophe and D. M. Jonas, Chem. Phys. 266, 295 (2001).

    Article  ADS  Google Scholar 

  39. M. A. Berg, K. D. Rector and M. D. Fayer, J. Chem. Phys. 113, 3233 (2000).

    Article  ADS  Google Scholar 

  40. W. Mikenda, J. Mol. Struct. 147, 1 (1986).

    Article  ADS  Google Scholar 

  41. D. Bertolini, M. Cassettari, M. Ferrario, P. Grigolini and G. Salvetti, Adv. Chem. Phys. 62, 277 (1985).

    Article  Google Scholar 

  42. A. J. Lock, S. Woutersen and H. J. Bakker, J. Phys. Chem. A 105, 1238 (2001).

    Article  Google Scholar 

  43. S. Woutersen, U. Emmerichs and H. J. Bakker, Science 278, 658 (1997).

    Article  ADS  ISI  Google Scholar 

  44. S. A. Corcelli, C. P. Lawrence and J. L. Skinner, J. Chem. Phys. 120, 8107 (2004).

    Article  ADS  Google Scholar 

  45. W. L. Jorgensen, J. Chandrasekhar and J. D. Nadura, J. Chem. Phys. 79, 926 (1983).

    Article  ADS  Google Scholar 

  46. H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).

    Article  Google Scholar 

  47. T. H. Joo, Y. W. Jia, J. Y. Yu, D. M. Jonas and G. R. Fleming, J. Chem. Phys. 104, 6089 (1996); W. de Boeij, M. S. Pshenichnikov and D. A. Wiersma, Chem. Phys. Lett. 253, 53 (1996).

    Article  ADS  Google Scholar 

  48. A. Piryatinski and J. L. Skinner, J. Phys. Chem. B 106, 8055 (2002).

    Google Scholar 

  49. J. Marti, J. A. Padro and E. Guardia, J. Chem. Phys. 105, 639 (1996).

    Article  ADS  Google Scholar 

  50. T. Steinel, J. B. Asbury, S. A. Corcelli, C. P. Lawrence, J. L. Skinner and M. D. Fayer, Chem. Phys. Lett. 386, 295 (2004).

    Article  ADS  Google Scholar 

  51. C. P. Lawrence, University of Wisconsin at Madison, 2003.

    Google Scholar 

  52. A. Piryatinski, C. P. Lawrence and J. L. Skinner, J. Chem. Phys. 118, 9672 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Asbury, J.B., Steinel, T., Fayer, M.D. (2005). Vibrational Echo Correlation Spectroscopy. In: Hannaford, P. (eds) Femtosecond Laser Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/0-387-23294-X_7

Download citation

Publish with us

Policies and ethics