Skip to main content

Evolutionary Dynamics in Random Environments

  • Chapter
Stochastic Dynamics

Abstract

This article exploits a thermodynamic formalism and the mathematics of diffusion processes to investigate the evolutionary stability of structured populations, that is the invulnerability of the populations to invasion by rare mutants. Growth in structured populations is described in terms of random dynamical systems, and random transfer operators are used to obtain and characterize the steady state in terms of a set of macroscopic parameters. We analyze the extinction dynamics of interacting populations via coupled diffusion equations and show that evolutionary stability is characterized by the extremal states of entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. L. Arnold, L. Demetrius, and V. M. Gundlach. Evolutionary formalism for products of positive random matrices. Ann. Appl. Probab., 4:859–901, 1994.

    MATH  MathSciNet  Google Scholar 

  2. L. Arnold and V. Wihstutz, editors. Lyapunov Exponents, Proceedings, Bremen 1984, volume 1186 of Lecture Notes in Math., New York, Berlin, 1986. Springer.

    Google Scholar 

  3. T. Bogenschütz. Equilibrium States for Random Dynamical Systems. PhD thesis, Universität Bremen, 1993.

    Google Scholar 

  4. T. Bogenschütz and V. M. Gundlach. Ruelle’s transfer operator for random subshifts of finite type. Ergod. Th. & Dynam. Sys., 15:413–447, 1995.

    Article  MATH  Google Scholar 

  5. H. Caswell. Matrix Population Models: Construction, Analysis, and Interpretation. Sinauer Associates, Sunderland, Massachusetts, 1989.

    Google Scholar 

  6. B. Charlesworth. Evolution in Age-Structured Populations. Cambridge Univ. Press, Cambridge, 1980.

    MATH  Google Scholar 

  7. J. Crow and M. Kimura. An Introduction to Population Genetics Theory. Harper and Row, New York, 1970.

    MATH  Google Scholar 

  8. L. Demetrius. Statistical mechanics and population biology. Jour. Stat. Phys., 30:709–753, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Demetrius and V. M. Gundlach. Game theory and evolution: Existence and characterization of evolutionary stable strategies. Preprint, 1998.

    Google Scholar 

  10. W. J. Ewens. Mathematical Population Genetics, volume 9 of Biomathematics. Springer, New York, Berlin, 1979.

    Google Scholar 

  11. W. Feller. Diffusion processes in genetics. In J. Neyman, editor, Proc. 2nd Berkeley Symposium on Mathematical Statistics and Probability, pages 227–246, Berkeley, 1951. University of California Press.

    Google Scholar 

  12. R. Fisher. The Genetical Theory of Natural Selection. Clarendon, Oxford, 1930.

    MATH  Google Scholar 

  13. J. Gillespie. Natural selection for within-generation variance in off-spring number. Genetics, 76:601–606, 1974.

    MathSciNet  Google Scholar 

  14. V. M. Gundlach. Thermodynamic formalism for random subshifts of finite type. Report 385, Institut für Dynamische Systeme, Universität Bremen, 1996. revised 1998.

    Google Scholar 

  15. V. M. Gundlach. Random shifts and matrix products. Habilitationsschrift (in preparation), 1998.

    Google Scholar 

  16. V. M. Gundlach and O. Steinkamp. Products of random rectangular matrices. Report 372, Institut für Dynamische Systeme, Universität Bremen, 1996. To appear in Mathematische Nachrichten.

    Google Scholar 

  17. K. Khanin and Y. Kifer. Thermodynamic formalism for random transformations and statistical mechanics. Amer. Math. Soc. Transl. Ser. 2, 171:107–140, 1996.

    MathSciNet  Google Scholar 

  18. Y. Kifer. Limit theorems for random transformations and processes in random environments. Trans. Amer. Math. Soc., 350:1481–1518, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Kimura. Some problems of stochastic processes in genetics. Ann. Math. Stat., 28:882–901, 1957.

    MATH  Google Scholar 

  20. H. Possehl. Dichteabhängige Lesliematrizen in der Evolutionsdynamik. Diplomarbeit, Universität Bremen, 1995.

    Google Scholar 

  21. L. Ricciardi. Diffusion Processes and Related Topics in Biology, volume 14 of Lecture Notes in Biomath. Springer, New York, Berlin, 1977.

    MATH  Google Scholar 

  22. D. Ruelle. Thermodynamic Formalism, volume 5 of Encyclopedia of Mathematics and its Applications. Addison-Wesley, Reading, Mass., 1978.

    MATH  Google Scholar 

  23. S. Tuljapurkar. Population Dynamics in Variable Environments, volume 85 of Lecture Notes in Biomath. Springer, New York, Berlin, 1990.

    MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Demetrius, L., Gundlach, V.M. (1999). Evolutionary Dynamics in Random Environments. In: Stochastic Dynamics. Springer, New York, NY. https://doi.org/10.1007/0-387-22655-9_16

Download citation

  • DOI: https://doi.org/10.1007/0-387-22655-9_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98512-1

  • Online ISBN: 978-0-387-22655-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics