Skip to main content

Part of the book series: Astronomy and Astrophysics Library ((AAL))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sirota, M.J. and Thompson, P.M., Azimuth/elevation servo design of the W. M. Keck telescope, SPIE Proc., Vol. 887, p. 168, 1988.

    ADS  Google Scholar 

  2. Nurre, G., Anhouse, S.J., and Gullapalli, S.N., Hubble Space Telescope fine guidance sensor control system, SPIE Proc., Vol. 1111, p. 327, 1989.

    ADS  Google Scholar 

  3. Sirota, M.J., Thompson, P. M., and Jex, H. R., Azimuth/elevation servo performance of the W. M. Keck telescope, SPIE Proc., Vol. 2199, p. 126, 1994.

    Article  ADS  Google Scholar 

  4. Campbell, M.F. and Elsaie, A.M., Structural optimization and modeling of large dynamic structures for controls simulation, SPIE Proc., Vol. 4004, p. 320, 2000.

    Article  ADS  Google Scholar 

  5. Quattri, M., Zago, L., and Plöotz, F., Design evolution and performance evaluation of the VLT telescope structure, ESO Conference on Very Large Telescopes and Their Instrumentation, Ulrich, M.-H., ed., 1988, p. 127.

    Google Scholar 

  6. Ravensbergen, M., Main axes servo systems of the VLT, SPIE Proc., Vol. 2199, p. 997, 1994.

    Article  ADS  Google Scholar 

  7. Huang, E., Line-of-sight sensitivity equations, Gemini Report TN-O-G0017, 1992.

    Google Scholar 

  8. Bay, J.S., Fundamentals of Linear State Space Systems, McGraw-Hill, 1998.

    Google Scholar 

  9. White, C.V. and Levine, M.B., Experiments to measure material damping at cold temperatures, Report JPL D-22047, Jet Propulsion Laboratory, 2001.

    Google Scholar 

  10. Landau, L.D. and Lifshitz, E.M., Theory of Elasticity, Pergamon Press, 1986, Chap. 4.

    Google Scholar 

  11. Friedland, B., Control Systems Design, McGraw-Hill, 1985.

    Google Scholar 

  12. Dougherty, H. et al., Space Telescope pointing control system, J. Guidance, Control Dynam., Vol. 5, No. 4, p. 403, 1982.

    Article  ADS  Google Scholar 

  13. Kalman, R.E., A new approach to linear filtering and prediction problems, Trans. ASME, J. of Basic Eng., Vol. 82, p. 35, 1960.

    Google Scholar 

  14. Brown, R.G. and Hwang, P.Y.C., Introduction to Random Signals and Applied Kalman Filtering, John Wiley & Sons, 1992.

    Google Scholar 

  15. Dahl, P.R., Solid friction damping of spacecraft oscillations, AIAA Guiding and Control Conference, Paper 75–1104, 1975.

    Google Scholar 

  16. Bertin, B., Driving the French 2 m and 3.60 m telescopes from the horseshoe, ESO Conference on Large Telescope Design, p. 405, 1971.

    Google Scholar 

  17. Young, W.C., Roark’s Formulas for Stress and Strain, McGraw-Hill, 1989, p. 647.

    Google Scholar 

  18. Ellington, S., Disturbance rejection of the WTYN telescope position control servosystem, SPIE Proc., Vol. 2479, p. 278, 1995.

    Article  ADS  Google Scholar 

  19. Wilkes, J., Fisher, M., Selection of a tape encoding system for the main axis of the Gemini telescopes, SPIE Proc., Vol. 3112, p. 30, 1997.

    Article  ADS  Google Scholar 

  20. Erm, T. and Gutierrez, P., Integration and tuning of the VLT drive systems, SPIE Proc., Vol. 4004, p. 490, 2000.

    Article  ADS  Google Scholar 

  21. Dougherty, H., Rodden, J., Reschke, L.F., Trompetini, K., Weinstein, S.P., and Slater, D., Performance characterization of the Hubble Space Telescope rate gyro assembly, Preprints 10th IFAC Symposium, Toulouse, p. 217, 1985.

    Google Scholar 

  22. Cassidy, L. W. and Abreu R., Star trackers for spacecraft application, SPIE Proc., Vol. 1304, p. 58, 1990.

    Article  ADS  Google Scholar 

  23. Eaton, D.J. and Abramowicz-Reed, L., Acquisition, pointing and tracking performance of the Hubble Space Telescope fine guidance sensors, SPIE Proc., Vol. 1697, p. 236, 1992.

    Article  ADS  Google Scholar 

  24. Tyler, G.A. and Fried, D.L., Image-position error associated with quadrant detector, J. Opt. Soc. Am., Vol. 72, No. 6, p. 804, 1982.

    Article  ADS  Google Scholar 

  25. Hardy, J.W., Adaptive Optics for Astronomical Telescopes, Oxford Books, 1998, p. 398.

    Google Scholar 

  26. Spagna, A., Guide star requirements for NGST, Space Telescope Science Institute Report STScI-NGST-R-0013B, 2001 (available on the STScI website).

    Google Scholar 

  27. Bradley, A., Abramowicz-Reed, A., Story, D., Benedict, G., and Jeffrys, W., The flight hardware and ground system for Hubble Space Telescope astrometry, PASP, Vol. 103, p. 317, 1991.

    Article  ADS  Google Scholar 

  28. Murdock, J.W., Fluid Mechanics and Its Applications, Houghton Miffin, 1976.

    Google Scholar 

  29. Davenport, A. G., The spectrum of horizontal gustiness near the ground in high winds, Quart. J. Roy. Met. Soc., Vol. 87, p. 194., 1961.

    Article  ADS  Google Scholar 

  30. Simiu, E and Scanlan, R.H., Wind Effects on Structures: An Introduction to Wind Engineering, John Wiley & Sons, 1978.

    Google Scholar 

  31. Mikami, I. et al., Enclosure of Subaru telescope, SPIE Proc., Vol. 2199, p. 430, 1994.

    Article  ADS  Google Scholar 

  32. Medwadowski, S.J., UC telescope pier rotations due to wind action on the observatory dome, Keck Report No. 53, 1984.

    Google Scholar 

  33. Wertz, J. R., ed., Spacecraft Attitude Determination and Control, D. Reidel, 1986, p. 570.

    Google Scholar 

  34. Masterson, R.A., Miller, D.W., and Grogan, R.L., Development of empirical and analytical reaction wheel disturbance models, AIAA 40th Structures, Structural Dynamics and Materials Conference, AIAA-99-1204, 1999.

    Google Scholar 

  35. Bialke, B., Microvibration disturbance sources in reaction wheels and momentum wheels, Proc. ESA Conference on Spacecraft Structures, Materials & Mechanical Testing, 1996.

    Google Scholar 

  36. Melody, J.W., Discrete-frequency and broadband reaction wheel disturbance models, Jet Propulsion Laboratory Interoffice Memorandum 3411-95-200 csi, 1995.

    Google Scholar 

  37. Neat, G.W., Melody, J.W., and Lurie, B.J., Vibration attenuation approach for spaceborne optical interferometers, IEEE Trans. Control Syst. Technol., Vol. 6, No. 6, p. 689, 1998.

    Article  Google Scholar 

  38. Bely, P.Y., Lupie, O.L., and Hershey, J.L., The line-of-sight jitter of the Hubble Space Telescope, SPIE Proc., Vol. 1945, p. 55, 1993.

    Article  ADS  Google Scholar 

  39. Baier, H. and Locatelli, G., Active and passive microvibration control in telescope structures, SPIE Proc., Vol. 4004, p. 267, 2000.

    Article  ADS  Google Scholar 

  40. Davis, L.P., Wilson, J.F., Jewell, R.E., and Rodden, J.J., Hubble Space Telescope reaction wheel assembly vibration isolation system, Proc. NASA Workshop on Structural Dynamics and Control Interaction of Flexible Structures, Marshall Space Flight Center, N87-22702 16-15, p. 669, 1986.

    Google Scholar 

  41. Nye, T.W., Bronowicki, A.J., Manning, R. A., and Simonian, S.S., Applications of robust damping treatments to advanced spacecraft structures, Proceedings of the 19th Rocky Mountain Guidance & Control Conference, American Astronautical Society, Advances in the Astronautical Sciences, Vol. 92, p. 531, 1996.

    Google Scholar 

Bibliography

  • Den Hartog, J.P., Mechanical Vibrations, McGraw-Hill, 1957.

    Google Scholar 

  • Germann, L.M., Gupta, A.A., and Lewis, R.A., Precision pointing and inertial line-of-sight stabilization using fine-steering mirrors, star trackers, and accelerometers, SPIE Proc., Vol. 887, p. 96, 1988.

    ADS  Google Scholar 

  • Kaplan, M. H., Modern Spacecraft Dynamics and Control, John Wiley & Sons, 1976.

    Google Scholar 

  • Katsuhiko O., Modern Control Engineering, Prentice-Hall, 1997.

    Google Scholar 

  • Kuo, B.C., Automatic Control Systems, Prentice-Hall, 1985.

    Google Scholar 

  • Wertz, J. R., ed., Spacecraft Attitude Determination and Control, D. Reidel, 1986.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

(2003). Pointing and Control. In: The Design and Construction of Large Optical Telescopes. Astronomy and Astrophysics Library. Springer, New York, NY. https://doi.org/10.1007/0-387-22606-0_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-22606-0_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95512-4

  • Online ISBN: 978-0-387-22606-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics