Skip to main content

Arsenic Hazards to Humans, Plants, and Animals from Gold Mining

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 180))

Summary

Arsenic sources to the biosphere associated with gold mining include waste soil and rocks, residual water from ore concentrations, roasting of some types of gold-containing ores to remove sulfur and sulfur oxides, and bacterially enhanced leaching. Arsenic concentrations near gold mining operations are elevated in abiotic materials and biota: maximum total arsenic concentrations measured were 560 μg/L in surface waters, 5.16 mg/L in sediment pore waters, 5.6 mg/kg DW in bird liver, 27 mg/kg DW in terrestrial grasses, 50 mg/kg DW in soils, 79 mg/kg DW in aquatic plants, 103 mg/kg DW in bird diets, 225 mg/kg DW in soft parts of bivalve molluscs, 324 mg/L in mine drainage waters, 625 mg/kg DW in aquatic insects, 7,700 mg/kg DW in sediments, and 21,000 mg/kg DW in tailings.

Single oral doses of arsenicals that were fatal to 50% of tested species ranged from 17 to 48 mg/kg BW in birds and from 2.5 to 33 mg/kg BW in mammals. Susceptible species of mammals were adversely affected at chronic doses of 1–10 mg As/kg BW or 50 mg As/kg diet. Sensitive aquatic species were damaged at water concentrations of 19–48 μg As/L, 120 mg As/kg diet, or tissue residues (in the case of freshwater fish) >1.3 mg/kg fresh weight. Adverse effects to crops and vegetation were recorded at 3–28 mg of water-soluble As/L (equivalent to about 25–85 mg total As/kg soil) and at atmospheric concentrations >3.9 μg As/m3. Gold miners had a number of arsenic-associated health problems, including excess mortality from cancer of the lung, stomach, and respiratory tract. Miners and school children in the vicinity of gold mining activities had elevated urine arsenic of 25.7 μg/L (range, 2.2–106.0 μg/L). Of the total population at this location, 20% showed elevated urine arsenic concentrations associated with future adverse health effects; arsenic-contaminated drinking water is the probable causative factor of elevated arsenic in their urine. Proposed arsenic criteria to protect human health and natural resources are listed and discussed. Many of these proposed criteria do not adequately protect sensitive species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abernathy CO, Calderon RL, Chappell WR (eds) (1997) Arsenic. Exposure and Health Effects. Chapman & Hall, London.

    Google Scholar 

  • Adams MA, Bolger M, Carrington CD, Coker CE, Cramer GM, DiNovi MJ, Dolan S (1993) Guidance document for arsenic in shellfish. U.S. Food and Drug Admin, Washington, DC.

    Google Scholar 

  • Adams MD, Johns MW, Dew DW (1999) Recovery of gold from ores and environmental aspects. In: Schmidbaur H (ed) Gold: Progress in Chemistry, Biochemistry and Technology. Wiley, New York, pp 66–104.

    Google Scholar 

  • Agate AD (1996) Recent advances in microbial mining. World J Microbiol Biotechnol 12:487–495.

    Article  CAS  Google Scholar 

  • Amonoo-Neizer EH, Amekor EMK (1993) Determination of total arsenic in environmental samples from Kumasi and Obuasi, Ghana. Environ Health Perspect 101:46–49.

    PubMed  CAS  Google Scholar 

  • Amonoo-Neizer EH, Nyamah D, Bakiamoh SB (1996) Mercury and arsenic pollution in soil and biological samples around the mining town of Obuasi, Ghana. Water Air Soil Pollut 91:63–373.

    Article  Google Scholar 

  • Asperger S, Cetina-Cizmek B (1999) Metal complexes in tumour therapy. Acta Pharm 49:225–236.

    CAS  Google Scholar 

  • Azcue JM, Mudroch A, Rosa F, Hall GEM (1994) Effects of abandoned gold mine tailings on the arsenic concentrations in water and sediments of Jack of Clubs Lake, B.C. Environ Technol 15:669–678.

    CAS  Google Scholar 

  • Boffetta P, Kogevinas M, Pearce N, Matos E (1994) Cancer. In: Occupational Cancer in Developing Countries. IARC Sci Publ 129. Oxford University Press, New York, pp 111–126.

    Google Scholar 

  • Bowell RJ, Warren A, Minjera HA, Kimaro N (1995) Environmental impact of former gold mining on the Orangi River, Serengeti N.P., Tanzania. Biogeochemistry 28: 131–160.

    Article  CAS  Google Scholar 

  • Bright DA, Coedy B, Dushenko WT, Reimer KJ (1994) Arsenic transport in a watershed receiving gold mine effluent near Yellow knife, Northwest Territories, Canada. Sci Total Environ 155:237–252.

    Article  CAS  Google Scholar 

  • Bright DA, Dodd M, Reimer KJ (1996) Arsenic in sub-Arctic lakes influenced by gold mine effluent: the occurrence of organoarsenicals and ‘hidden’ arsenic. Sci Total Environ 180:165–182.

    Article  CAS  Google Scholar 

  • Cain DJ, Luoma SN, Carter JL, Fend SV (1992) Aquatic insects as bioindicators of trace element contamination in cobble-bottom rivers and streams. Can J Fish Aquat Sci 49: 2141–2154.

    Article  CAS  Google Scholar 

  • Camardese MB, Hoffman DJ, LeCaptain LJ, Pendleton GW (1990) Effects of arsenate on growth and physiology in mallard ducklings. Environ Toxicol Chem 9:785–795.

    CAS  Google Scholar 

  • Cockell KA, Hilton JW (1985) Chronic toxicity of dietary inorganic and organic arsenicals to rainbow trout (Salmo gairdneri R.). Fed Proc 44(4):938.

    Google Scholar 

  • Custer TW, Custer CM, Larson S, Dickerson KK (2002) Arsenic concentrations in house wrens from Whitewood Creek, South Dakota, USA. Bull Environ Contam Toxicol 68:517–524.

    Article  PubMed  CAS  Google Scholar 

  • Da Rosa CD, Lyon JS (eds) (1997) Golden dreams, poisoned streams. Mineral Policy Center, Washington, DC.

    Google Scholar 

  • Deknudt G, Leonard A, Arany J, Du Buisson GJ, Delavignette E (1986) In vivo studies in male mice on the mutagenic effects of inorganic arsenic. Mutagenesis 1:33–34.

    PubMed  CAS  Google Scholar 

  • Eisler R (2000) Arsenic. In: Handbook of Chemical Risk Assessment: Health Hazards to Humans, Plants, and Animals, vol 3. Lewis, Boca Raton, pp 1501–1566.

    Google Scholar 

  • Galbraith H, LeJeune K, Lipton J (1995) Metal and arsenic impacts to soils, vegetation communities and wildlife habitat in southwest Montana uplands contaminated by smelter emissions. I. Field evaluation. Environ Toxicol Chem 14:1895–1903.

    CAS  Google Scholar 

  • Goede AA (1985) Mercury, selenium, arsenic and zinc in waders from the Dutch Wadden Sea. Environ Pollut 37A:287–309.

    Google Scholar 

  • Golow AA, Schleuter A, Amihere-Mensah S, Granson HLK, Tetteh MS (1996) Distribution of arsenic and sulphate in the vicinity of Ashanti goldmine at Obuasi, Ghana. Bull Environ Contam Toxicol 56:703–710.

    Article  PubMed  CAS  Google Scholar 

  • Greer J (1993) The price of gold: environmental costs of the new gold rush. Ecologist 23(3):91–96.

    Google Scholar 

  • Grosser JR, Hagelgans V, Hentschel T, Priester M (1994) Heavy metals in stream sediments: a gold mining area near Los Andes, southern Columbia S.A. Ambio 23:146–149.

    Google Scholar 

  • Hallberg KB, Sehlin HM, Lindstrom EB (1996) Toxicity of arsenic during high temperature bioleaching of gold-bearing arsenical pyrite. Appl Microbiol Biotechnol 45:212–216.

    Article  CAS  Google Scholar 

  • Hamasaki T, Nagase H, Yoshioka Y, Sato T (1995) Formation, distribution, and ecotoxicity of methylmetals of tin, mercury, and arsenic in the environment. Crit Rev Environ Sci Technol 25:45–91.

    Article  CAS  Google Scholar 

  • Hoffman DJ, Sanderson CJ, LeCaptain LJ, Cromartie E, Pendleton GW (1992) Interactive effects of arsenate, selenium, and dietary protein on survival, growth, and physiology in mallard ducklings. Arch Environ Contam Toxicol 22:55–62.

    Article  PubMed  CAS  Google Scholar 

  • Holson JF, DeSesso JM, Scialli AR, Farr CF (1998) Inorganic arsenic and prenatal development: a comprehensive evaluation for human risk assessment. In: Society for Envi-ronmental Geochemistry and Health (SEGH) 3rd International Conference on Arsenic Exposure Health Effects, San Diego, California, July 12–15, 1998, p 23.

    Google Scholar 

  • Hood RD (1985) Cacodylic acid: agricultural uses, biologic effects, and environmental fate. VA Monograph. Available from Supt. Documents, US Govt Printing Office, Washington, DC.

    Google Scholar 

  • Hood RD, Vedel-Macrender GC, Zaworotko MJ, Tatum FM, Meeks RG (1987) Distribution, metabolism, and fetal uptake of pentavalent arsenic in pregnant mice following oral or intraperitoneal administration. Teratology 35:19–25.

    Article  PubMed  CAS  Google Scholar 

  • Hopenhayn-Rich C, Johnson KD, Hertz-Picciotto J (1998) Reproductive and developmental effects associated with chronic arsenic exposure. In: Society for Environmental Geochemistry and Health (SEGH), 3rd International Conference on Arsenic Exposure Health Effects, San Diego California, July 12–15, 1998, p. 21.

    Google Scholar 

  • Huang H, Dasgupta PK (1999) A field-deployable instrument for the measurement and speciation of arsenic in potable water. Anal Chim Acta 380:27–37.

    Article  CAS  Google Scholar 

  • Hudson RH, Tucker RK, Haegle MA (1984) Handbook of Toxicity of Pesticides to Wildlife. Resource Publ 153. U.S. Fish and Wildlife Service, Washington, DC.

    Google Scholar 

  • Hughes MF, Kenyon EM (1998) Dose-dependent effects on the disposition of monomethylarsonic acid and dimethylarsinic acid in the mouse after intravenous administration. J Toxicol Environ Health 53A:95–112.

    Article  Google Scholar 

  • Jauge P, Del-Razo LM (1985) Uric acid levels in plasma and urine in rats chronically exposed to inorganic As(III) and As(V). Toxicol Lett 26:31–35.

    Article  PubMed  CAS  Google Scholar 

  • Jelinek CF, Corneliussen PE (1977) Levels of arsenic in the United States food supply. Environ Health Perspect 19:83–87.

    PubMed  CAS  Google Scholar 

  • Jenkins DW (1980) Biological Monitoring of Toxic Trace Metals, vol 2. Toxic Trace Metals in Plants and Animals of the World. Part 1. Report 600/3-80-090. U.S. Environmental Protection Agency, Washington, DC, pp 30–138.

    Google Scholar 

  • Jewett SC, Naidu S (2000) Assessment of heavy metals in red king crabs following offshore placer gold mining. Mar Pollut Bull 40:478–490.

    Article  CAS  Google Scholar 

  • Johnson WW, Finley MT (1980) Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates. Resource Publ 137. U.S. Fish and Wildlife Service, Washington, DC.

    Google Scholar 

  • Johnson SW, Rice SD, Moles DA (1998a) Effects of submarine mine tailings disposal on juvenile yellowfin sole (Pleuronectes asper): a laboratory study. Mar Pollut Bull 36:278–287.

    Article  Google Scholar 

  • Johnson SW, Stone RP, Love DC (1998b) Avoidance behavior of ovigerous tanner crabs Chionoecetes bairdi exposed to mine tailings: a laboratory study. Alaska Fish Res Bull 5:39–45.

    Google Scholar 

  • Kabir H, Bilgi C (1993) Ontario gold miners with lung cancer. J Occup Med 35:1203–1207.

    PubMed  CAS  Google Scholar 

  • Kurttio P, Komulainen H, Hakala E, Pekkanen J (1998) Urinary excretion of arsenic species after exposure to arsenic present in drinking water. Arch Environ Contam Toxicol 34:297–305.

    Article  PubMed  CAS  Google Scholar 

  • Kusiak RA, Ritchie AC, Springer J, Muller J (1993) Mortality from stomach cancer in Ontario miners. Br J Ind Med 50:117–126.

    PubMed  CAS  Google Scholar 

  • Lau S, Mohamed M, Yen ATC, Su’ut S (1998) Accumulation of heavy metals in freshwater molluscs. Sci Total Environ 214:113–121.

    Article  PubMed  CAS  Google Scholar 

  • Leduc G (1984) Cyanides in water: toxicological significance. In: Weber JL (ed) Aquatic Toxicology, vol 2. Raven Press, New York, pp 153–224.

    Google Scholar 

  • Lima AR, Curtis C, Hammermeister DE, Markee TP, Northcutt CE, Brooke LT (1984) Acute and chronic toxicities of arsenic (III) to fathead minnows, flagfish, daphnids, and an amphipod. Arch Environ Contam Toxicol 13:595–601.

    Article  CAS  Google Scholar 

  • Marques IA, Anderson LE (1986) Effects of arsenite, sulfite, and sulfate on photosynthetic carbon metabolism in isolated pea (Pisum sativum L., cv Little Marvel) chloroplasts. Plant Physiol 82:488–493.

    Article  PubMed  CAS  Google Scholar 

  • Matschullat J, Borba RP, Deschamps E, Figueiredo BR, Gabrio T, Schwenk M (2000) Human and environmental contamination in the iron quadrangle, Brazil. Appl Geochem 15:181–190.

    Article  CAS  Google Scholar 

  • May TW, Wiedmeyer RH, Gober J, Larson S (2001) Influence of mining-related activities on concentrations of metals in water and sediment from streams of the Black Hills, South Dakota. Arch Environ Contam Toxicol 40:1–9.

    Article  PubMed  CAS  Google Scholar 

  • McGeachy SM, Dixon DG (1990) Effect of temperature on the chronic toxicity of arsenate to rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 47:2228–2234.

    Article  Google Scholar 

  • Meharg AA, Shore RF, Broadgate KF (1998) Edaphic factors affecting the toxicity and accumulation of arsenate in the earthworm Lumbricus terrestris. Environ Toxicol Chem 17:1124–1131.

    Article  CAS  Google Scholar 

  • Nagymajtenyi L, Selypes A, Berencsi G (1985) Chromosomal aberrations and fetotoxic effects of atmospheric arsenic exposure in mice. J Appl Toxicol 5:61–63.

    Article  PubMed  CAS  Google Scholar 

  • Naqvi SM, Flagge CT (1990) Chronic effects of arsenic on American red crayfish, Procambarus clarki, exposed to monosodium methanearsonate (MSMA) herbicide. Bull Environ Contam Toxicol 45:101–106.

    Article  PubMed  CAS  Google Scholar 

  • National Academy of Sciences (NAS) (1977) Arsenic. NAS, Washington, DC.

    Google Scholar 

  • National Research Council of Canada (NRCC) (1978) Effects of arsenic in the Canadian environment. Publ 15391. NRCC, available from publications NRCC/CNRC, Ottawa, Ontario, Canada

    Google Scholar 

  • Ng JC, Seawright AA, Qi L, Garnett CM, Moore MR, Chiswell B (1998) Tumours in mice induced by chronic exposure of high arsenic concentrations in drinking water. In: Society for Environmental Geochemistry and Health (SEGH) 3rd International Conference on Arsenic Exposure Health Effects, San Diego, California, July 12–15, 1998, p 28.

    Google Scholar 

  • Ngubane WT, Baecker AAW (1990) Oxidation of gold-bearing pyrite and arsenopyrite by Sulfolobus acidocaldarius and Sulfolobus BC in airlift reactors. Biorecovery 1: 255–259.

    CAS  Google Scholar 

  • Nystrom RR (1984) Cytological changes occurring in the liver of coturnix quail with an acute arsenic exposure. Drug Chem Toxicol 7:587–594.

    PubMed  CAS  Google Scholar 

  • O’Neill P (1990) Arsenic. In: Heavy Metals in Soils. Halsted Press, Glasgow, pp 83–99.

    Google Scholar 

  • Ozretic B, Krajinovic-Ozretic M, Santin J, Medjugorac B, Kras M (1990) As, Cd, Pd, and Hg in benthic animals from the Kvarber-Rijeka region, Yugoslavia. Mar Pollut Bull 21:595–597.

    Article  CAS  Google Scholar 

  • Pain S (1987) After the goldrush. New Sci 115 (1574):36–40.

    Google Scholar 

  • Passino DRM, Novak AJ (1984) Toxicity of arsenate and DDT to the cladoceran Bosmina longirostris. Bull Environ Contam Toxicol 33:325–329.

    Article  PubMed  CAS  Google Scholar 

  • Pendleton GW, Whitworth MR, Olsen GH (1995) Accumulation and loss of arsenic and boron, alone and in combination, in mallard ducks. Environ Toxicol Chem 14: 1357–1364.

    CAS  Google Scholar 

  • Pershagen G, Vahter M (1979) Arsenic—a Toxicological and Epidemiological Appraisal. Naturvards-verket Rapp SNV PM 1128. Liber Tryck, Stockholm.

    Google Scholar 

  • Phillips DJH, Thompson GB, Gabuji KM, Ho CT (1982). Trace metals of toxicological significance to man in Hong Kong seafood. Environ Pollut 3B:27–45.

    Google Scholar 

  • Rahn PH, Davis AD, Webb CJ, Nichols AD (1996) Water quality impacts from mining in the Black Hills, South Dakota, USA. Environ Geol 27:38–53.

    Article  CAS  Google Scholar 

  • Ripley EA, Redmann RE, Crowder AA (1996) Environmental effects of mining. St. Lucie Press, Delray Beach, FL.

    Google Scholar 

  • Robertson ID, Harms WE, Ketterer PJ (1984) Accidental arsenic toxicity of cattle. Aust Vet J 61:366–367.

    PubMed  CAS  Google Scholar 

  • Robertson JL, McLean JA (1985) Correspondence of the LC50 for arsenic trioxide in a diet-incorporation experiment with the quantity of arsenic ingested as measured by X-ray, energy-dispersive spectrometry. J Econ Entomol 78:1035–1036.

    CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (1998) Bioindication of gold by aquatic bryophytes. Acta Hydrochim Hydrobiol 26:90–94.

    Article  CAS  Google Scholar 

  • Sanders JG (1986) Direct and indirect effects of arsenic on the survival and fecundity of estuarine zooplankton. Can J Fish Aquat Sci 43:694–699.

    CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological and preliminary biochemical studies. Appl Environ Microbiol 66:92–97.

    Article  PubMed  CAS  Google Scholar 

  • Savabieasfahani M, Lochmiller RL, Rafferty DP, Sinclaiar JA (1998) Sensitivity of wild cotton rats (Sigmodon hispidus) to the immunotoxic effects of low-level arsenic exposure. Arch Environ Contam Toxicol 34:289–296.

    Article  PubMed  CAS  Google Scholar 

  • Selby LA, Case AA, Osweiler GD, Hages HM Jr (1977) Epidemiology and toxicology of arsenic poisoning in domestic animals. Environ Health Perspect 19:183–189.

    PubMed  CAS  Google Scholar 

  • Sheppard MI, Thibault DH, Sheppard SC (1985) Concentrations and concentration ratios of U, As and Co in Scots pine grown in a waste-site soil and an experimentally contaminated soil. Water Air Soil Pollut 26:85–94.

    Article  CAS  Google Scholar 

  • Simonato L, Moulin JJ, Javelaud B, Ferro G, Wild P, Winkelmann R, Saracci R (1994) A retrospective mortality study of workers exposed to arsenic in a gold mine and refinery in France. Am J Ind Med 25:625–633.

    PubMed  CAS  Google Scholar 

  • Society for Environmental Geochemistry and Health (SEGH) (1998) Abstracts, Third International Conference on Arsenic Exposure and Health Effects, San Diego, CA, July 12–15, 1998.

    Google Scholar 

  • Sorensen EMB, Mitchell RR, Pradzynski A, Bayer TL, Wenz LL (1985) Stereological analyses of hepatocyte changes parallel arsenic accumulation in the livers of green sunfish. J Environ Pathol Toxicol Oncol 6:195–210.

    PubMed  CAS  Google Scholar 

  • Spehar RL, Fiandt JT, Anderson RL, DeFoe DL (1980) Comparative toxicity of arsenic compounds and their accumulation in invertebrates and fish. Arch Environ Contam Toxicol 9:53–63.

    Article  PubMed  CAS  Google Scholar 

  • Stanley TR, Spann JW, Smith GJ, Rosscoe R (1994) Main and interactive effects of arsenic and selenium on mallard reproduction and duckling growth and survival. Arch Environ Contam Toxicol 26:444–451.

    Article  CAS  Google Scholar 

  • Stine ER, Hsu CA, Hoovers TD, Aposhian HV, Carter DE (1984) N-(2,3-Dimercaptopro-pyl)phthalamidic acid: protection in vivo and in vitro against arsenic intoxication. Toxicol Appl Pharmacol 75:329–336.

    Article  PubMed  CAS  Google Scholar 

  • Stone RP, Johnson SW (1997) Survival, growth, and bioaccumulation of heavy metals by juvenile tanner crabs (Chionoecetes bairdi) held on weathered mine tailings. Bull Environ Contam Toxicol 58:830–837.

    Article  PubMed  CAS  Google Scholar 

  • Stone RP, Johnson SW (1998) Prolonged exposure to mine tailings and survival and reproductive success of ovigerous tanner crabs (Chionoecetes bairdi). Bull Environ Contam Toxicol 61:548–556.

    Article  PubMed  CAS  Google Scholar 

  • Tarras-Wahlberg NH, Flachier A, Fredriksson G, Lane S, Lundberg B, Sangfors O (2000) Environmental impact of small-scale and artisanal gold mining in southern Ecuador. Ambio 29:484–491.

    Google Scholar 

  • Thatcher CD, Meldrum JB, Wikse SE, Whittier WD (1985) Arsenic toxicosis and suspected chromium toxicosis in a herd of cattle. J Am Vet Assoc 187:179–182.

    CAS  Google Scholar 

  • Thursby GB, Steele RL (1984) Toxicity of arsenite and arsenate to the marine macroalgae Champia parvula (Rhodophyta). Environ Toxicol Chem 52:641–648.

    Google Scholar 

  • U.S. Bureau of Land Management (USBLM) (2000) Cumulative impact analysis of dewatering and water management operations for the Betze Project, South Operations Area Amendment, and Leevile Project. USBLM, Elko, NV.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1980) Ambient water quality criteria for arsenic. Report 440/5-80-021. Washington, DC.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1985) Ambient water quality criteria for arsenic—1984. Report 440/5-84-033. EPA, Washington, DC.

    Google Scholar 

  • U.S. Public Health Service (USPHS) (2000) Toxicological profile for arsenic (update). Draft for public comment. Agency Toxic Substances Diseases Registry. USPHS, Washington, DC.

    Google Scholar 

  • ]van der Veen NG, Vreman K (1986) Transfer of cadmium, lead, mercury and arsenic from feed into various organs and tissues of fattening lambs. Neth J Agric Sci 34: 134–153.

    Google Scholar 

  • Vreman K, van der Veen NG, van der Molen EJ, de Ruig WG (1986) Transfer of cadmium, lead, mercury and arsenic from feed into milk and various tissues of dairy cows: chemical and pathological data. Neth J Agric Sci 34:129–144.

    CAS  Google Scholar 

  • Wang DS, Weaver RW, Melton JR (1984) Microbial decomposition of plant tissue contaminated with arsenic and mercury. Environ Pollut 34A:275–282.

    Google Scholar 

  • Webb DR, Wilson SE, Carter DE (1986) Comparative pulmonary toxicity of gallium arsenide, gallium (III) oxide or arsenic (III) oxide intratracheally instilled into rats. Toxicol Appl Pharmacol 82:405–416.

    Article  PubMed  CAS  Google Scholar 

  • Winski SL, Carter DE (1998) Arsenate toxicity in human erythrocytes: characterization of morphologic changes and determination of the mechanism of damage. J Toxicol Environ Health 53A:345–355.

    Article  Google Scholar 

  • Wong HKT, Gauthier A, Nriagu JO (1999) Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. Sci Total Environ 228: 35–47.

    Article  CAS  Google Scholar 

  • Woolson EA (ed) (1975) Arsenical Pesticides. ACS Symposia, Services 7. American Chemical Society, Washington, DC.

    Google Scholar 

  • Yoshida K, Inoue Y, Kuroda K, Chen H, Wanibuchi H, Fukushima S, Endo G (1998) Urinary excretion of arsenic metabolites after long-term oral administration of various arsenic compounds to rats. J Toxicol Environ Health 54A:179–192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by George W. Ware.

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Eisler, R. (2004). Arsenic Hazards to Humans, Plants, and Animals from Gold Mining. In: Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 180. Springer, New York, NY. https://doi.org/10.1007/0-387-21729-0_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-21729-0_3

  • Received:

  • Accepted:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-40402-8

  • Online ISBN: 978-0-387-21729-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics