Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Amitai, “Design of wavelength-division multiplexing/demultiplexing using substrate-mode holographic elements,” Opt. Comm. 98, 24–28 (1993).

    Article  ADS  Google Scholar 

  2. Y. Amitai, I. Shariv, M. Kroch, A. Friesem, and S. Reinhorn, “White-light holographic display based on planar optics,” Opt. Lett. 18(15), 1265–1267 (1993).

    Article  ADS  Google Scholar 

  3. H. Ando and K. Namba Shinji, “Light-guiding device having a hologram layer,” U.S. Patent 5,268,985 (1993).

    Google Scholar 

  4. R.D. Bahuguna and T. Corboline, “Prism fingerprint sensor that uses a holographic optical element,” Appl. Opt. 35(26), 5242–5245 (1996).

    Article  ADS  Google Scholar 

  5. S.A. Benton, S.M. Birner, and A. Shirakura, “Edge-lit rainbow holograms,” Proc. SPIE 1212, 149–157 (1990).

    Article  ADS  Google Scholar 

  6. S.A. Benton and S.M. Birner, “Self-contained compact multi-color edge-lit holographic display,” U.S. Patent 5,121,229 (1992).

    Google Scholar 

  7. S.M. Birner, “Steep reference angle holography: analysis and applications,” M. Sc. Vis. Stud. thesis, Massachusetts Institute of Technology, (February, 1989).

    Google Scholar 

  8. O. Bryngdahl, “Holography with evanescent waves,” JOSA 59(12), 145 (1969).

    Article  ADS  Google Scholar 

  9. O. Bryngdahl, “Evanescent waves in optical imaging,” Progress in Optics XI, 167–221 (1973).

    Article  Google Scholar 

  10. H.J. Caulfield and Q. Huang, “Wide field of view transmission holography,” Opt. Comm. 86, 487–490 (1991).

    Article  ADS  Google Scholar 

  11. H.J. Caulfield, Q. Huang, A. Putilin, and V. Morozov, “Multimode waveguide holograms capable of using non-coherent light,” U.S. Patent 5,295,208 (1994).

    Google Scholar 

  12. H.J. Caulfield, Q. Huang, A. Putilin, and V. Morozov, “Side illuminated multimode waveguide,” U.S. Patent 5,465,311 (1995).

    Google Scholar 

  13. H.J. Caulfield, Q. Huang, A. Putilin,V. Morozov, and J. Shamir, “Waveguide hologram illuminators,” U.S. Patent 5,515,184 (1996).

    Google Scholar 

  14. H.J. Caulfield, Q. Huang, A. Putilin,V. Morozov, and J. Shamir, “Waveguide hologram illuminators,” U.S. Patent 5,854,697 (1998).

    Google Scholar 

  15. Z. Coleman, “Modern holographic recording and analysis techniques applied to edgelit holograms and their applications,” Doctoral Thesis, Loughborough University, 1997.

    Google Scholar 

  16. Z. Coleman, M. Metz, and N. Phillips, “Holograms in the extreme edge illumination geometry,” Proc. SPIE 2688, 96–108 (1996).

    Article  ADS  Google Scholar 

  17. M. Drake, M. Lidd, and M. Fiddy, “Waveguide hologram fingerprint entry device,” Opt. Eng., 35(9), 2499–2505 (1996).

    Article  ADS  Google Scholar 

  18. S. Eguchi, I. Igaki, H. Yahagi, F. Yamagishi, H. Ikeda, and T. Inagaki, “Uneven-surface data detection apparatus,” U.S. Patent 4,728,186 (1988).

    Google Scholar 

  19. W. Farmer, S. Benton, and M. Klug, “The application of the edge-lit format to holographic stereograms,” Proc. SPIE 1461, 215–226 (1991).

    Article  ADS  Google Scholar 

  20. Y. Fujimoto, M. Katagiri, N. Fukuda, and K. Sakamoto, “Fingerprint input apparatus,” U.S. Patent 5,177,802 (1993).

    Google Scholar 

  21. D.G. Hall, “Diffraction efficiency of waveguide gratings: Brewster’s law,” Opt. Lett. 5(77), 315–317, (1980).

    Article  ADS  Google Scholar 

  22. M. Henrion, “Diffraction and exposure characteristics of the edgelit hologram,” Master’s thesis, MIT (1995).

    Google Scholar 

  23. R. Hopkins, “Military Standardization Handbook, Optical Design (MIL-HDBK-141),” (1962).

    Google Scholar 

  24. Q. Huang and H.J. Caulfield, “Edge-lit reflection holograms,” Proc. SPIE 1600, 182–186 (1991).

    Article  ADS  Google Scholar 

  25. Q. Huang and H.J. Caulfield, “Waveguide holography and its applications,” Proc. SPIE 1461, 303–312 (1991).

    Article  ADS  Google Scholar 

  26. Q. Huang, J.A. Gilbert, and H.J. Caulfield, “Substrate guided wave (SGW) holointerferometry,” Proc. SPIE 1667, 172–181 (1992).

    Article  ADS  Google Scholar 

  27. Q. Huang and J.A. Gilbert, “Diffraction properties of substrate guided-wave holograms,” Opt. Eng. 34(10), 2891–2899 (1995).

    Article  ADS  Google Scholar 

  28. Q. Huang, “Substrate guided wave holography: analysis, experiments, and applications,” Doctoal thesis, The University of Alabama in Huntsville (1994).

    Google Scholar 

  29. S. Igaki, S. Eguchi, F. Yamagishi, H. Ikeda, and T. Inagaki, “Real-time fingerprint sensor using a hologram,” Appl. Opt. 31, 1794–1802 (1992).

    Article  ADS  Google Scholar 

  30. R. Kostuk, Y. Huang, D. Hetherington, and M. Kato, “Reducing alignment and chromatic sensitivity of holographic interconnects with substrate mode holograms,” Appl. Opt. 28(22), 4939–4944 (1989).

    Article  ADS  Google Scholar 

  31. T. Kubota, “Flat type illuminator and its applications,” Jpn. J. Opt. 19, 383–385 (1990).

    Google Scholar 

  32. T. Kubota and M. Takeda, “Array illuminator using grating couplers,” Opt. Lett. 14, 651–652 (1989).

    Article  ADS  Google Scholar 

  33. T. Kubota, K. Fujioka, and M. Kitagawa, “Method for reconstructing a hologram using a compact device,” Appl. Opt. 31, 4734–4737 (1992).

    Article  ADS  Google Scholar 

  34. T. Kubota, “Creating a more attractive hologram,” Leonardo 25, 503–506 (1992).

    Article  Google Scholar 

  35. T. Kubota and H. Ueda, “Compact display system for hologram,” Proc. SPIE 2866, 207–214 (1996).

    Article  ADS  Google Scholar 

  36. L.H. Lin, “Edge Illuminated Holograms,” JOSA 60, 714A (1970).

    Article  Google Scholar 

  37. W. Lukosz and A. Wuthrich, “Holography with evanescent waves,” Optik 41(2), 194–211 (1974).

    Google Scholar 

  38. W. Lukosz and A. Wuthrich, “Hologram recording and readout with the evanescent field of guided waves,” Opt. Comm. 19(2), 232–235, (1976).

    Article  ADS  Google Scholar 

  39. M. Metz, “Edge-lit holography strives for market acceptance,” Laser Focus World, 159–163, (May 1994).

    Google Scholar 

  40. M. Metz, C. Flatow, Z. Coleman, and N. Phillips, “The use of edge-lit holograms for compact fingerprint capture,” Proc. CardTech/SecurTech’ 95, Washington, D.C., 222–228 (1995).

    Google Scholar 

  41. M. Metz, Z. Coleman, N. Phillips, and C. Flatow, “Holographic optical element for compact fingerprint imaging system,” Proc. SPIE 2659, 141–151 (1996).

    Article  ADS  Google Scholar 

  42. M. Metz, C. Flatow, N. Phillips, and Z. Coleman, “Device for forming and detecting fingerprint images with valley and ridge structure,” U.S. Patent 5,974,162 (1999).

    Google Scholar 

  43. M. Miler, V.N. Morozov, and A.N. Putilin, “Diffraction components for integrated optics,” Sov. J. Quant. Electron. 19(3), 276–283 (1989).

    Article  ADS  Google Scholar 

  44. J.M. Miller, N. de Beaucoudrey, P. Chavel, J. Turunen, and E. Cambril, “Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection,” Appl. Opt. 36(23), 5717–5727 (1997).

    Article  ADS  Google Scholar 

  45. G. Moss, “Holographic indicator for determining vehicle perimeter,” U.S. Patent 4,737,001 (1988).

    Google Scholar 

  46. G. Moss, “Holographic display panel for a vehicle windshield,” U.S. Patent 4,790,613 (1988).

    Google Scholar 

  47. G. Moss, “Segmented 3-D hologram display,” U.S. Patent 4,795,223 (1989).

    Google Scholar 

  48. G. Moss, “Holographic thin panel display system,” U.S. Patent 4,807,951 (1989).

    Google Scholar 

  49. G. Moss, “Holographic rear window stoplight,” U.S. Patent 4,892,369 (1990).

    Google Scholar 

  50. H. Nassenstein, “Holographie und interferenzversuche mit inhomogenen oberflachenwellen,” Phys. Lett. A 28, 249–251 (1968).

    Article  Google Scholar 

  51. H. Nassenstein, “Interference, diffraction and holography with surface waves (’subwaves’) I,” Optik 29, 597–607 (1969)

    Google Scholar 

  52. H. Nassenstein, “Interference, diffraction and holography with surface waves (’subwaves’) II,” Optik 30, 44–55 (1969)

    Google Scholar 

  53. H. Nassenstein, “Holography with surface waves,” U.S. Patent 3,635,540 (1972).

    Google Scholar 

  54. N. Nishihara and T. Kubota, “A compact display system for hologram using a holographic grating,” Proc. 3D Image Conference’ 95, 19–23 (1995).

    Google Scholar 

  55. H. Okamoto, H. Ueda, K. Taima, E. Shimizu, T. Nishihara, F. Iwata, and T. Kubota, “A compact display system for hologram,” Proc. SPIE 2333, 424–428 (1995).

    Article  ADS  Google Scholar 

  56. N.J. Phillips, C. Wang, and T.E. Yeo, “Edge-illuminated holograms, evanescent waves and related optics phenomena,” Proc. SPIE 1600, 18–25 (1991).

    Article  ADS  Google Scholar 

  57. N.J. Phillips and C. Wang, “The recording and replay of true edge-lit holograms,” IEE Conference Publication 342, 8–11 (1991).

    Google Scholar 

  58. N.J. Phillips, C. Wang, and Z. Coleman, “Holograms in the edge-illuminated geometry-new materials developments,” Proc. SPIE 1914, 75–81 (1993).

    Article  ADS  Google Scholar 

  59. A. Putilin, V. Morozov, Q. Huang, and H. Caulfield, “Waveguide holograms with white light illumination,” Opt. Eng. 30(10), 1615–1619 (1991).

    Article  ADS  Google Scholar 

  60. A. Shimizu and K. Sakuda, “Simple measuring technique for the diffraction efficiency of slanted volume gratings at various wavelengths,” Appl Opt. 36(23), 5769–5774 (1997).

    Article  ADS  Google Scholar 

  61. L. Singher and J. Shamir, “Waveguide holographic elements recorded by guided modes,” Appl. Opt. 33(7), 1180–1186 (1994).

    Article  ADS  Google Scholar 

  62. K.A. Stetson, “Holography with total internally reflected light,” Appl. Phys. Lett. 11(7), 225–226 (1967).

    Article  ADS  Google Scholar 

  63. K.A. Stetson, “Improved resolution and signal-to-noise ratios in total internal reflection holograms,” Appl. Phys. Lett. 12(11), 362–364 (1968).

    Article  ADS  Google Scholar 

  64. K.A. Stetson, “An analysis of the properties of total internal reflection holograms,” Optik 29, 520–536 (1969).

    Google Scholar 

  65. T. Suhara, H. Nishihara, and J. Koyama, “Waveguide holograms: a new approach to hologram integration,” Opt. Comm. 19(3), 353–358 (1976).

    Article  ADS  Google Scholar 

  66. J. Tedesco, “Edge-lit holographic diffusers for flat-panel displays,” U.S. Patent 5,418,631 (1995).

    Google Scholar 

  67. H. Ueda, K. Taima, and T. Kubota, “Edge-illuminated color holograms,” Proc. SPIE 2043, 278–286 (1993).

    ADS  Google Scholar 

  68. H. Ueda, E. Shimizu, and T. Kubota, “Image blur of edge-illuminated holograms,” Opt. Eng. 37(1), 241–246 (1998).

    Article  ADS  Google Scholar 

  69. J. Upatnieks, “Compact holographic sight,” Proc. SPIE 883, 171–176 (1988).

    ADS  Google Scholar 

  70. J. Upatnieks, “Method and apparatus for recording and displaying edge-illuminated holograms,” U.S. Patent 4,643,515 (1987).

    Google Scholar 

  71. J. Upatnieks, “Edge-illuminated holograms,” Appl. Opt. 31(8), 1048–1052 (1992).

    Article  ADS  Google Scholar 

  72. J. Upatnieks, “Compact hologram displays and method of making compact hologram,” U.S. Patent 5,515,800 (1992).

    Google Scholar 

  73. J. Wreede and J. Scott, “Display hologram,” U.S. Patent 5,455,693 (1995).

    Google Scholar 

  74. A. Wuthrich and W. Lukosz, “Holographie mit quergedämpften wellen II. Experimentelle Untersuchungen der Beugungswirkungsgrade,” Optik 42, 315 (1975).

    Google Scholar 

  75. A. Wuthrich and W. Lukosz, “Holography with guided optical waves, I. experimental techniques and results.,” Appl. Phys. 21, 55–64 (1980).

    Article  ADS  Google Scholar 

  76. A. Wuthrich and W. Lukosz, “Holography with guided optical waves II, theory of the diffraction efficiencies,” Appl. Phys. 22, 161–170 (1980).

    Article  ADS  Google Scholar 

  77. J.-H. Yeh and R. Kostuk, “Free-space holographic optical interconnects for board-toboard and chip-to-chip interconnections,” Opt. Lett. 21(16), 1274–1276 (1996).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Metz, M. (2002). Edge-Lit Holograms. In: Ludman, J., Caulfield, H.J., Riccobono, J. (eds) Holography for the New Millennium. Springer, New York, NY. https://doi.org/10.1007/0-387-21693-6_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-21693-6_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95334-2

  • Online ISBN: 978-0-387-21693-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics