Skip to main content

Physical Principles of Sensing

  • Chapter
Handbook of Modern Sensors
  • 1118 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halliday, D. and Resnick, R. Fundamentals of Physics, 2nd ed. John Wiley & Sons, New York, 1986.

    Google Scholar 

  2. Crotzer, D.R. and Falcone, R. Method for manufacturing hygristors. U.S. patent 5,273,777; 1993.

    Google Scholar 

  3. Meissner, A. Ãœber piezoelectrische Krystalle bei Hochfrequenz. Z. Tech. Phys. 8(74), 1927.

    Google Scholar 

  4. Neubert, H. K. P. Instrument transducers. An introduction to their performance and design, 2nd ed. Clarendon Press, Oxford, 1975.

    Google Scholar 

  5. Radice, P. F. Corona discharge poling process, U.S. patent 4,365, 283, 1982.

    Google Scholar 

  6. Southgate, P.D., Appl. Phys. Lett. 28, 250, 1976.

    Article  ADS  Google Scholar 

  7. Jaffe, B., Cook, W. R., and Jaffe, H. Piezoelectric Ceramics. Academic Press, London, 1971.

    Google Scholar 

  8. Mason, W. P. Piezoelectric Crystals and Their Application to Ultrasonics. Van Nostrand, New York, 1950.

    Google Scholar 

  9. Megaw, H. D. Ferroelectricity in Crystals. Methuen, London, 1957.

    Google Scholar 

  10. Tamura, M., Yamaguchi, T., Oyaba, T., and Yoshimi, T. J. Audio Eng. Soc. 23(31) 1975.

    Google Scholar 

  11. Elliason, S. Electronic properties of piezoelectric polymers. Report TRITA-FYS 6665 from Dept. of Applied Physics, The Royal Institute of Technology, Stockholm, Sweden, 1984.

    Google Scholar 

  12. Piezo Film Sensors Technical Manual. Measurement Specialties, Inc., Fairfield, NJ, 1999; available from www.msiusa.com.

    Google Scholar 

  13. Oikawa, A. and Toda, K. Preparation of Pb(Zr,Ti)O3 thin films by an electron beam evaporation technique. Appl. Phys. Lett. 29, 491, 1976.

    Article  ADS  Google Scholar 

  14. Okada, A. Some electrical and optical properties of ferroelectric lead-zirconite-lead-titanate thin films. J. Appl. Phys., 48, 2905, 1977.

    Article  ADS  Google Scholar 

  15. Castelano, R.N. and Feinstein, L.G. Ion-beam deposition of thin films of ferroelectric lead-zirconite-titanate (PZT). J. Appl. Phys., 50, 4406, 1979.

    Article  ADS  Google Scholar 

  16. Adachi, H., et al. Ferroelectric (Pb, La)(Zr, Ti)O3 epitaxial thin filmson sapphire grown by RF-planar magnetron sputtering. J. Appl. Phys. 60, 736, 1986.

    Article  ADS  Google Scholar 

  17. Ogawa, T., Senda S., and Kasanami, T. Preparation of ferroelectric thin films by RF sputtering. J. Appl. Phys. 28–2, 11–14, 1989.

    Google Scholar 

  18. Roy, D., Krupanidhi, S. B., and Dougherty, J. Excimer laser ablated leadzirconite titanate thin films. J. Appl. Phys. 69, 1, 1991.

    Article  Google Scholar 

  19. Yi, G., Wu, Z., and Sayer, M. Preparation of PZT thin film by sol-gel processing: electrical, optical, and electro-optic properties. J. Appl. Phys. 64(5), 2717–2724, 1988.

    Article  ADS  Google Scholar 

  20. Kawai, H. The piezoelectricity of poly(vinylidene fluoride). Jpn. J. of Appl. Phys. 8, 975–976, 1969.

    Article  ADS  Google Scholar 

  21. Meixner, H., Mader, G., and Kleinschmidt, P. Infrared sensors based on the pyroelectric polymer polyvinylidene fluoride (PVDF). Siemens Forsch. Entwicl. Ber. Bd. 15(3), 105–114, 1986.

    ADS  Google Scholar 

  22. Kleinschmidt, P. Piezo-und pyroelektrische Effekte. In: Sensorik. W. Heyward. Springer, Heidelberg, 1984, Chap. 6.

    Google Scholar 

  23. Semiconductor Sensors. Data Handbook. Philips Export B.V, Eindhoven, 1988.

    Google Scholar 

  24. Ye, C., Tamagawa, T., and Polla, D.L. Pyroelectric PbTiO3 thin films for microsensor applications. In: Transducers’91. International conference on Solid-State Sensors and Actuators. Digest of Technical Papers, Schooley, J., ed. IEEE, New York, 1991, pp. 904–907.

    Google Scholar 

  25. Beer, A. C. Galvanomagnetic Effect in Semiconductors. Solid State Physics. F. Seitz and D. Turnbull, eds. Academic Press, New York, 1963.

    Google Scholar 

  26. Putlye, E. H. The Hall Effect and Related Phenomena. Semiconductor monographs., Hogarth, ed. Butterworths, London, 1960.

    Google Scholar 

  27. Sprague, Hall Effect and Optoelectronic Sensors. Data Book SN-500, 1987.

    Google Scholar 

  28. Williams, J. Thermicouple measurement, In: Linear applications handbook, Linear Technology Corp., 1990.

    Google Scholar 

  29. Seebeck, T., Dr. Magnetische Polarisation der Metalle und Erze durch Temperatur Differenz. Abhaandulgen der Preussischen Akademic der Wissenschaften, pp. 265–373, 1822–1823.

    Google Scholar 

  30. Benedict, R. P. Fundamentals of Temperature, Pressure, and Flow Measurements, 3rd ed. John Wiley & Sons, New York, 1984.

    Book  Google Scholar 

  31. LeChatelier, H. Copt. Tend., 102, 1886.

    Google Scholar 

  32. Carter, E. F. ed., Dictionary of Inventions and Discoveries. Crane, Russak and Co., New York, 1966.

    Google Scholar 

  33. Peltier, J.C.A. Investigation of the heat developed by electric currents in homogeneous materials and at the junction of two different conductors, Ann. Phys. Chem., 56, 1834.

    Google Scholar 

  34. Thomson, W. On the thermal effects of electric currents in unequal heated conductors. Proc. R. Soc. VII, 1854.

    Google Scholar 

  35. Manual on the Use of Thermocouples in Temperature Measurement. ASTM, Philadelphia, 1981.

    Google Scholar 

  36. Doebelin, E.O. Measurement Systems: Application and Design, 4th ed. McGraw-Hill, New York, 1990.

    Google Scholar 

  37. Holman J. P. Heat Transfer, 3rd ed. McGraw-Hill, New York, 1972.

    Google Scholar 

  38. Fraden, J. Blackbody cavity for calibration of infrared thermometers. U.S. patent 6447160, 2002.

    Google Scholar 

  39. Thompson, S. Control Systems. Engineering & Design. Longman Scientific & Technical, Essex, UK, 1989.

    Google Scholar 

  40. MacDonald, D.K.C. Thermoelectricity: an introduction to the principles. John Wiley & Sons, New York, 1962.

    MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

(2004). Physical Principles of Sensing. In: Handbook of Modern Sensors. Springer, New York, NY. https://doi.org/10.1007/0-387-21604-9_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-21604-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00750-2

  • Online ISBN: 978-0-387-21604-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics