Skip to main content

Inherited Pancreatic Cancer Syndromes

  • Chapter
Pancreatic Cancer

Part of the book series: M. D. Anderson Solid Tumor Oncology Series ((MDA))

  • 232 Accesses

Summary

As we have documented, up to 10% of cases of pancreatic cancer occur as a result of an inherited genetic predisposition. This incidence of genetic susceptibility is higher than reported for all other inherited cancer syndromes. Furthermore, given that the penetrance for the genes identified to date is low and the development of pancreatic cancer in affected individuals occurs later in life, the 10% estimate for an inherited basis of pancreatic cancer is low. In considering the true frequency for an inherited predisposition to pancreatic cancer it is important to take into account the fact that all the genetic changes associated with pancreatic adenocarcinoma detailed in this review have been identified within the past 10 years.

Knowing that the incidence of an inherited basis for pancreatic cancer is high and that results for standard treatment are poor, the question arises of whether we can use our current knowledge to screen and prophylactically treat patients at risk. Unlike with colorectal cancer and breast cancer, there is currently no simple, reliable test to screen patients for pancreatic cancer. Additionally, the required prophylactic surgery for pancreatic cancer is associated with a significantly higher morbidity and mortality than that required for patients with a genetic predisposition for breast and colorectal cancer. At this time it would be unwise to recommend intensive screening of any single group for pancreatic cancer, with the possible exception of patients with hereditary pancreatitis who have developed chronic changes in their pancreas. In this small subset of patients a relative risk of 40 to 75 times the general population may justify screening.

Further research into the pathogenesis of pancreatic cancer will undoubtedly uncover other genes that may confer an increased risk for this disease. When this research is coupled with work aimed at understanding the mechanism by which the currently known genes contribute to pancreatic carcinogenesis, we hope to make a significant impact on the mortality of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hilgers W, Kern SE. Molecular genetic basis of pancreatic adenocarcinoma. Genes Chromosomes Cancer. 1999;26:1–12.

    Article  CAS  PubMed  Google Scholar 

  2. Evans JP, Burke W, Chen R, Bennett RL, Schmidt RA, Dellinger EP, Kimmey M, Crispin D, Brentall TA, Byrd DR. Familial pancreatic adenocarcinoma: association with diabetes and early molecular diagnosis. J Med Genet. 1995;32:330–335.

    CAS  PubMed  Google Scholar 

  3. Lynch HT, Fusaro L, Lynch JF. Familial pancreatic cancer: a family study. Pancreas. 1992;7:511–515.

    Article  CAS  PubMed  Google Scholar 

  4. Lynch HT, Smyrk T, Kern SE, et al. Familial pancreatic cancer: a review. Semin Oncol. 1996;23:251–275.

    CAS  PubMed  Google Scholar 

  5. Ghadirian P, Boyle P, Simard A, Baillargeon J, Maisonneuve P, Perret C. Reported family aggregation of pancreatic cancer within a population-based case-control study in the Francophone community in Montreal, Canada. Int J Pancreatol. 1991;10:183–196.

    CAS  PubMed  Google Scholar 

  6. Falk RT, Pickle LW, Fontham ET, Correa P, Fraumeni JF. Life-style risk factors for pancreatic cancer in Louisiana: a case-control study. Am J Epidemiol. 1988; Am J Epidemiol.:128.

    Google Scholar 

  7. Fernandez E, La Vecchia C, D’Avanzo B, Negri E, Franceshi S. Family history and the risk of liver, gallbladder, and pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 1994;3:209–212.

    CAS  PubMed  Google Scholar 

  8. Lal G, Liu G, Schmocker B, et al. Inherited predisposition to pancreatic adenocarcinoma: role of family history and germ-line p16, BRCA1, and BRCA 2 mutations. Cancer Res. 2000;60:409–416.

    CAS  PubMed  Google Scholar 

  9. Bergman W, Watson P, de Jong J, Lynch HT, Fusaro RM. Systemic cancer and the FAMMM syndrome. Br J Cancer. 1990;61:932–936.

    CAS  PubMed  Google Scholar 

  10. Spigelman AD, Murday V, Phillips RK. Cancer and the Peutz-Jeghers syndrome. Gut. 1989;30:1588–1590.

    CAS  PubMed  Google Scholar 

  11. Giardiello FM, Welsh SB, Hamilton SR. Increased risk of cancer in the Peutz-Jeghers syndrome. N Engl J Med. 1987;316:1511–1514.

    CAS  PubMed  Google Scholar 

  12. Aarnio M, Mecklin JP, Aaltonen LA, Nystromlahti M, Jarvinen HJ. Life-time risk of different cancers in hereditary nonpolyposis colorectal cancer syndrome. Int J Cancer. 1995;64:430–433.

    CAS  PubMed  Google Scholar 

  13. Lynch HT, Voorhees GJ, Lanspa SJ, McGreevy PS, Lynch JF. Pancreatic cancer and hereditary nonpolyposis colorectal cancer: a family study. Br J Cancer. 1985;52:271–273.

    CAS  PubMed  Google Scholar 

  14. Giardiello FM, Offerhaus GJ, Lee DH. Increased risk of thyroid and pancreatic carcinoma in familial adenomatous polyposis. Gut. 1993;34:1394–1396.

    CAS  PubMed  Google Scholar 

  15. Swift M, Reitnauer PJ, Morrell D, Chase CL. Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med. 1987;316:1289–1294.

    CAS  PubMed  Google Scholar 

  16. The Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999;91:1310–1316.

    Google Scholar 

  17. Ford D, Easton DF, Stratton M, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998;62:676–689.

    Article  CAS  PubMed  Google Scholar 

  18. Schutte M, da Costa LT, Hahn SA, et al. Identification by representational differential analysis of a homozygous deletion in pancreatic carcinoma that lies within the BRCA2 region. Proc Natl Acad Sci U S A. 1995;92:5950–5954.

    CAS  PubMed  Google Scholar 

  19. Hahn SA, Seymour AB, Hoque ATMS, et al. Allelotype of pancreatic adenocarcinoma using xenograft enrichment. Cancer Res. 1995;55:4670–4675.

    CAS  PubMed  Google Scholar 

  20. Tonin P, Weber B, Offit K, et al. Frequency of recurrent BRCA1 and BRCA2 mutations in Ashkenazi Jewish breast cancer families. Nat Med. 1996;2:1179–1183.

    Article  CAS  PubMed  Google Scholar 

  21. Phelan CM, Lancaster JM, Tonin P, et al. Mutation analysis of the BRCA2 gene in 49 site-specific breast cancer families. Nat Genet. 1996;13:120–122.

    Article  CAS  PubMed  Google Scholar 

  22. Goggins M, Schutte M, Lu J, et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res. 1996;56:5360–5364.

    CAS  PubMed  Google Scholar 

  23. van Golen K, Milliron K, Davies S, Merajver SD. BRCA-associated cancer risk: molecular biology and clinical practice. J Lab Clin Med. 1999;134:11–18.

    PubMed  Google Scholar 

  24. Sharan SK, Morimatsu M, Albrecht U, et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking BRCA2. Nature. 1997;386:804–810.

    Article  CAS  PubMed  Google Scholar 

  25. Vaughn JP, Cirisano FD, Huper G, et al. Cell cycle control of BRCA2. Cancer Res. 1996;56:4590–4594.

    CAS  PubMed  Google Scholar 

  26. Greene MH. The genetics of hereditary melanoma and nevi. Cancer. 1999;86:2464–2477.

    CAS  PubMed  Google Scholar 

  27. Cannon-Albright LA, Meyer LJ, Goldgar DE, et al. Penetrance and expressivity of the chromosome 9p melanoma susceptibility locus. Cancer Res. 1994;54:6041–6044.

    CAS  PubMed  Google Scholar 

  28. Hussussian CJ, Struewing JP, Goldstein AM, et al. Germline p16 mutations in familial melanoma. Nat Genet. 1994;8:15–21.

    Article  CAS  PubMed  Google Scholar 

  29. Schenk M, Severson RK, Pawlish KS. The risk of subsequent primary cancer of the pancreas in patients with cutaneous malignant melanoma. Cancer. 1998;82:1672–1676.

    Article  CAS  PubMed  Google Scholar 

  30. Goldstein AM, Fraser MC, Struewig JP, et al. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. N Engl J Med. 1995;333:970–974.

    Article  CAS  PubMed  Google Scholar 

  31. Wilentz RE, Geradts J., Maynard R, et al. Inactivation of the p16 (INK4a) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res. 1998;58:4740–4744.

    CAS  PubMed  Google Scholar 

  32. Caldas C, Hahn SA, da Costa LT, et al. Frequent somatic mutations and hmozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet. 1994;8:27–32.

    Article  CAS  PubMed  Google Scholar 

  33. Bartsch D, Shevlin DW, Tung WS, Kisker O, Wells SA, Goodfellow PJ. Frequent mutations of CDKN2 in primary pancreatic adenocarcinomas. Genes Chromosome Cancer. 1995;14:189–195.

    CAS  Google Scholar 

  34. Liu Q, Yan YX, McClure M, Nakagawa H, Fujimura F, Rustgi AK. MTS-1 (CDKN2) tumor suppressor gene deletions are a frequent event in esophagus squamous cancer and pancreatic adenocarcinoma cell lines. Oncogene. 1995;10:619–622.

    CAS  PubMed  Google Scholar 

  35. Naumann M, Savitskaia N, Eilert C, Schramm A, Kalthoff H, Schmiegel W. Frequent codeletion of P16/MTS1 and P15/MTS2 and genetic alterations in P16/MTS1 in pancreatic tumors. Gastroenterology. 1996;110:1215–1224.

    Article  CAS  PubMed  Google Scholar 

  36. Hu Y-X, Watanabe H, Ohtsubo K. Frequent loss of p16 expression and its correlation with clinicopathological parameters in pancreatic carcinoma. Clin Cancer Res. 1997;3:1473–1477.

    CAS  PubMed  Google Scholar 

  37. Cannon-Albright LA, Goldgar DE, Neuhausen S, et al. Localization of the 9p melanoma susceptibility locus (MLM) to a 2-cM region between D9S736 and D9S171. Genomics. 1994;23:265–268.

    Article  CAS  PubMed  Google Scholar 

  38. Cannon-Albright LA, Goldgar DE, Meyer LJ, et al. Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. Science. 1992;258:1148–1152.

    CAS  PubMed  Google Scholar 

  39. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994;264:436–440.

    CAS  PubMed  Google Scholar 

  40. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995;83:993–1000.

    CAS  PubMed  Google Scholar 

  41. Whitcomb DC, Preston RA, Aston CE, et al. A gene for hereditary pancreatitis maps to chromosome 7q35. Gastroenterology. 1996;110:1975–1980.

    Article  CAS  PubMed  Google Scholar 

  42. Sibert JR. Hereditary pancreatitis in England and Wales. J Med Genetics. 1978;15:189–201.

    CAS  Google Scholar 

  43. Perrault J. Hereditary pancreatitis. Gastroenterol Clin North Am. 1994;23:743–752.

    CAS  PubMed  Google Scholar 

  44. Finch MD, Howes N, Ellis I, et al. Hereditary pancreatitis and familial pancreatic cancer. Digestion. 1997;58:564–569.

    CAS  PubMed  Google Scholar 

  45. Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet. 1996;14:141–145.

    Article  CAS  PubMed  Google Scholar 

  46. Lowenfels AB, Maisonneuve P, DiMagno EP, et al. Herditary pancreatitis and the risk of pancreatic cancer. J Natl Cancer Inst. 1997;89:442–446.

    Article  CAS  PubMed  Google Scholar 

  47. Horii A, Nakatsuru S, Miyoshi Y, et al. Frequent somatic mutations of the APC gene in human pancreatic cancer. Cancer Res. 1992;52:6696–6698.

    CAS  PubMed  Google Scholar 

  48. Spigelman AD, Farmer KC, James M, Richman PI, Phillips RK. Tumors of the liver, bile ducts, pancreas, and duodenum, in a single patient with familial adenomatous polyposis. Br J Surg. 1991;78:979–980.

    CAS  PubMed  Google Scholar 

  49. Qizilbash AH. Familial polyposis and periampullary carcinoma. Canadian J Surg. 1976;19:166–168.

    CAS  Google Scholar 

  50. Nakamura Y. The adenomatous polyposis coli gene and human cancers. J Cancer Res Clin Oncol. 1995;121:529–534.

    Article  CAS  PubMed  Google Scholar 

  51. Jagelman DG, DeCosse JJ, Bussey HJ. Upper gastrointestinal cancer in familial adenomatous polyposis. Lancet. 1988;1(8595):1149–1151.

    CAS  PubMed  Google Scholar 

  52. Polakis P, Hart M, Rubinfeld B. Defects in the regulation of beta-catenin in colorectal cancer. Adv Exp Med Biol. 1999;470:23–32.

    CAS  PubMed  Google Scholar 

  53. Vasen HF, den Hartog Jager FC, Menko FH, Nagengast FM. Screening for hereditary non-polyposis colorectal cancer: a study of 22 kindreds in The Netherlands. Am J Med. 1989;86:278–281.

    Article  CAS  PubMed  Google Scholar 

  54. Schmutte C, Fishel R. Genomic instability: first step to carcinogenesis. Anticancer Res. 1999;19:4665–4696.

    CAS  PubMed  Google Scholar 

  55. Hemminki A. The molecular basis and clinical aspects of Peutz-Jeghers syndrome. Cell Mol Life Sci. 1999;55:735–750.

    CAS  PubMed  Google Scholar 

  56. Su GH, Hruban RH, Bansal RK, et al. Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. Am J Pathol. 1999;154:1835–1840.

    CAS  PubMed  Google Scholar 

  57. Bowlby LS. Pancreatic cancer in an adolescent male with Peutz-Jeghers syndrome. Hum Pathol. 1986;17:97–99.

    CAS  PubMed  Google Scholar 

  58. Thatcher BS, May ES, Taxier MS, Bonta JA, Murthy L. Pancreatic cancer in a patient with Peutz-Jeghers syndrome-a case report and review of the literature. Am J Gastroenterol. 1986;81:594–597.

    CAS  PubMed  Google Scholar 

  59. Walpole IR, Cullity G. Juvenile polyposis: a case with early presentation and death attributable to adenocarcinoma of the pancreas. Am J Med Genet. 1989;32:1–8.

    Article  CAS  PubMed  Google Scholar 

  60. Lavin MF, Shiloh Y. The genetic defect in ataxiatelangiectasia. Annu Rev Immunol. 1997;15:177–202.

    Article  CAS  PubMed  Google Scholar 

  61. Rotman G, Shiloh Y. ATM: from gene to function. Hum Mol Genet. 1998;7:1555–1563.

    Article  CAS  PubMed  Google Scholar 

  62. Flanders TY, Foulkes WD. Pancreatic adenocarcinoma: epidemiology and genetics. J Med Genet. 1996;33:889–898.

    CAS  PubMed  Google Scholar 

  63. Sholman L, Swift M. Pancreatic cancer and diabetes mellitus in families of ataxia-telangiectasia probands. Hum Genet. 1972;24:48A.

    Google Scholar 

  64. Smith GCM, Cary RB, Lakin ND, Hann BC, Teo SH, Chen DJ, Jackson SP. Purification and DNA binding properties of the ataxia-telangiectasia gene product ATM. Proc Natl Acad Sci U S A. 1999;96:11134–11139.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Berger, D.H., Fisher, W.E. (2002). Inherited Pancreatic Cancer Syndromes. In: Evans, D.B., Pisters, P.W.T., Abbruzzese, J.L. (eds) Pancreatic Cancer. M. D. Anderson Solid Tumor Oncology Series. Springer, New York, NY. https://doi.org/10.1007/0-387-21600-6_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-21600-6_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95185-0

  • Online ISBN: 978-0-387-21600-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics