Skip to main content

Conclusion

A number of disorders have so far been identified that appear to have associated congenital limbal stem cell functional deficiency. As our ability to readily identify stem cells improves, it is likely that other disorders will be recognized and our specific understanding of congenital stem cell dysfunction will increase. Hopefully, this will lead to more specific treatments that will allow better management of these presently difficult conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nelson, LB, Spaeth GL, Nowinski TS, et al. Aniridia. A review. Surv Ophthalmol 1984; 28:621–642.

    Article  CAS  PubMed  Google Scholar 

  2. Treacher Collins E. Congenital deficiency of the iris and glaucoma. Trans Ophth Soc UK 1893; 13:128–139.

    Google Scholar 

  3. Mackman G, Brightbill FS, Opitz JM. Corneal changes in aniridia. Am J Ophthalmol 1979; 87:497–502.

    CAS  PubMed  Google Scholar 

  4. Nishida K, Knoshita S, Ohashi Y, et al. Ocular surface abnormalities in aniridia. Am J Ophthalmol 1995; 120:368–375.

    CAS  PubMed  Google Scholar 

  5. Margo CE. Congenital aniridia: a histopathologic study of the anterior segment in children. J Pediatr Ophthalmol Strabismus 1983; 20:192–198.

    CAS  PubMed  Google Scholar 

  6. Tseng SCG, Li D-Q. Comparison of protein kinase C subtype expression between normal and aniridic human ocular surfaces: implication for limbal stem cell dysfunction in aniridia. Cornea 1996; 15:168–178.

    CAS  PubMed  Google Scholar 

  7. Glaser T, Walton DS, Maas RL. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat Genet 1992; 2:232–239.

    Article  CAS  PubMed  Google Scholar 

  8. Jordan T, Hanson I, Zaletayev D, et al. The human PAX6 gene is mutated in two patients with aniridia. Nat Genet 1992; 1:328–332.

    Article  CAS  PubMed  Google Scholar 

  9. Koroma BM, Yang JM, Sundin OH. The Pax-6 homeobox gene is expressed throughout the corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci 1997; 38:108–120.

    CAS  PubMed  Google Scholar 

  10. Pan Z, Zhang W, Wu Y. Expression of Pax-6 gene in corneal epithelial cells in vitro. Invest Ophthalmol Vis Sci 2000; 41:S456 Abst. No. 2415.

    Google Scholar 

  11. Kremer I, Rajpal RK, Rapuano CJ, et al. Results of penetrating keratoplasty in aniridia. Am J Ophth 1993; 115: 317–320.

    CAS  PubMed  Google Scholar 

  12. Gomes JAP, Eagle RC, Gomez AKGDP, et al. Recurrent keratopathy after penetrating keratoplasty in aniridia. Cornea 1996; 15:457–462.

    CAS  PubMed  Google Scholar 

  13. Holland EJ. Epithelial transplantation for the management of severe ocular surface disease. Trans Am Ophth Soc 1996; 94:677–743.

    CAS  Google Scholar 

  14. Tan DTH, Ficker LA, Buckley RJ. Limbal transplantation. Ophthalmology 1996; 103:29–36.

    CAS  PubMed  Google Scholar 

  15. Kivlin JD, Apple DJ, Olson RJ, et al. Dominantly inherited keratitis. Arch Ophthalmol 1986; 104:1621–1623.

    CAS  PubMed  Google Scholar 

  16. Pearce WG, Mielke BW, Hassard DTR, et al. Autosomal dominant keratitis: a possible aniridia variant. Can J Ophthalmol 1995; 30:131–137.

    CAS  PubMed  Google Scholar 

  17. Soong HK, Raizman MB. Corneal changes in familial iris coloboma. Ophthalmology 1986; 93:335–339.

    CAS  PubMed  Google Scholar 

  18. Mirzayans F, Pearce WG, MacDonald IM, et al. Mutation of the PAX6 gene in patients with autosomal dominant keratitis. Am J Hum Genet 1995; 57:539–548.

    CAS  PubMed  Google Scholar 

  19. Elliott JH, Feman SS, O’Day DM, et al. Hereditary sclerocornea. Arch Ophthalmol 1985; 103:676–679.

    CAS  PubMed  Google Scholar 

  20. Waizenegger UR, Kohnen T, Weidle EG, et al. Kongenitale familiäre cornea plana mit Ptosis, peripherer Sklerokornea und Bindehaut-Xerose. Klin Monatsbl Augenheilk 1995; 206:111–116.

    Article  Google Scholar 

  21. Hanson IM, Fletcher JM, Jordan T, et al. Mutations at the PAX6 locus are found in heterogenous anterior segment malformations including Peter’ anomaly. Nat Genet 1994; 6:168–173.

    Article  CAS  PubMed  Google Scholar 

  22. Churchill AJ, Booth AP, Anwar R, et al. PAX 6 is normal in most cases of Peters’ anomaly. Eye 1998; 12:299–303.

    PubMed  Google Scholar 

  23. Zingirian M. Keratoplasty for sclerocornea in early infancy. Fortschr Ophthalmol 1987; 84:429–431.

    CAS  PubMed  Google Scholar 

  24. Tsai R J-F, Tseng SCG. Human allograft limbal transplantation for corneal surface reconstruction. Cornea 1994; 13:389–400.

    CAS  PubMed  Google Scholar 

  25. Freire-Maia N, Pinheiro M. Ectodermal dysplasias: a review of the conditions described after 1984 with an overall analysis of all the conditions belonging to this nosologic group. Rev Brasil Genet 1988; 10:403–414.

    Google Scholar 

  26. Mawhorter LG, Ruttum MS, Koenig SB. Keratopathy in a family with the ectrodactyly-ectodermal dysplasiaclefting syndrome. Ophthalmology 1985; 92:1427–1431.

    CAS  PubMed  Google Scholar 

  27. Ireland IA, Meyer DR. Ophthalmic manifestations of ectrodacytyly-ectodermal dysplasia-clefting syndrome. Ophthal Plast Reconstr Surg 1998; 14:295–297.

    Article  CAS  PubMed  Google Scholar 

  28. Mondino BJ, Bath PE, Foos RY, et al. Absent meibomian glands in the ectrodactyly, ectodermal dysplasia, cleft lippalate syndrome. Am J Ophthalmol 1984; 97:496–500.

    CAS  PubMed  Google Scholar 

  29. Baum JL, Bull MJ. Ocular manifestations of the ectrodactyly, ectodermal dysplasia, cleft lip-palate syndrome. Am J Ophthalmol 1974; 78:211–216.

    CAS  PubMed  Google Scholar 

  30. Wilson FM, Grayson M, Pieroni D. Corneal changes in ectodermal dysplasia. Am J Ophthalmol 1973; 75:17–27.

    PubMed  Google Scholar 

  31. Tijmes NT, Zaal MJW, DeJong PTVM, et al. Two families with dyshidrotic ectodermal dysplasia associated with in-growth of corneal vessels, limbal hair growth, and Bitot-like conjunctival anomalies. Ophthalmic Genet 1997; 18: 185–192.

    CAS  PubMed  Google Scholar 

  32. Caceres-Rios H, Tamayo-Sanchez L, Duran-McKinster C, et al. Keratitis, ichthyosis, and deafness (KID) syndrome: A review of the literature and proposal of a new terminology. Pediatr Dermatol 1996; 13:105–113.

    Article  CAS  PubMed  Google Scholar 

  33. Wilson GN, Squires RH, Weinberg AG. Keratitis, hepatitis, ichthyosis, and deafness: report and review of KID syndrome. Amer J Med Genet 1991; 40:255–259.

    Article  CAS  Google Scholar 

  34. Hazen PG, Walker AE, Stewart JJ, et al. Keratitis, ichthyosis, and deafness (KID) syndrome: management with chronic oral ketoconazole therapy. Int J Dermatol 1992; 31:58–59.

    CAS  PubMed  Google Scholar 

  35. Blackman HJ, Rodrigues MM, Peck GL. Corneal epithelial lesions in keratosis follicularis (Darier’s disease). Ophthalmology 1980; 87:931–943.

    CAS  PubMed  Google Scholar 

  36. Granek H, Baden HP. Corneal involvement in epidermolysis bullosa simplex. Arch Ophthalmol 1980; 98:469–472.

    CAS  PubMed  Google Scholar 

  37. Wagman RD, Kazdan JJ, Kooh SW, et al. Keratitis associated with multiple endocrine deficiency, autoimmune disease, and candidiasis syndrome. Am J Ophthalmol 1987; 103:569–575.

    CAS  PubMed  Google Scholar 

  38. Bjorses P, Halonen M, Palvimo JJ, et al. Mutations in the AIRE gene: effect on subcellular location and transactivation function of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy protein. Am J Hum Genet 2000; 66:378–392.

    Article  CAS  PubMed  Google Scholar 

  39. Kaye SB, Willoughby CE, Haslett R, et al. Keratopathy in autoimmune polyglandular endocrinopathy-candidiasis-ectodermal dystrophy (APECED). Invest Ophthalmol Vis Sci 2000; 41:S266, Abst No. 1396.

    Google Scholar 

  40. Puangsricharern V, Tseng SCG. Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology 1995; 102:1476–1485.

    CAS  PubMed  Google Scholar 

  41. Tseng SCG, Meller D, Pires RTF, et al. Corneal surface reconstruction by limbal epithelial cells ex vivo expanded in amniotic membrane. Investigative Ophthalmol Vis Sci 2000; 41:S756 Abst No. 4016.

    Google Scholar 

  42. Walton WT, Enzenauer RW, Cornell FM. Abortive cryptophthalmos: a case report and a review of cryptophthalmos. J Pediatr Ophthalmol Strabismus 1990; 27:129–132.

    CAS  PubMed  Google Scholar 

  43. Ferri M, Harvey JT. Surgical correction for complete cryptophthalmos: case report and review of the literature. Can J Ophthalmol 1999; 34:233–236.

    CAS  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Sugar, J. (2002). Congenital Stem Cell Deficiency. In: Ocular Surface Disease Medical and Surgical Management. Springer, New York, NY. https://doi.org/10.1007/0-387-21570-0_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-21570-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95161-4

  • Online ISBN: 978-0-387-21570-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics