Skip to main content

The Relationship Between Protein Sequence, Structure and Function

Protein Function Prediction

  • Conference paper
Supramolecular Structure and Function 8

Conclusions

The holy grail of computational biology is the elucidation, at a molecular, cellular and biological level, of function.

As we tried to illustrate here, several routes are being followed to address the problem, each having advantages and pitfalls. The present challenge is to use our understanding of protein evolution to develop accurate methods for large-scale automatic assignment of function. At present, the level of accuracy with which we can predict function on the basis of genomic sequences is still dependent on the specific case considered, namely on the size of the family of the target protein and on its evolutionary distance from members of known function. The continuous growth of the number of available protein sequences and the coordinated effort of many research groups hold the promise that experimental biologists will soon be able to add reliable functional assignment tools to the suite of the many computational methods that are already part of their laboratory toolbox.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology. Nat Genet 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  4. Dayhoff, M.O., Schwartz, R.M. & Orcutt, B.C. A Model for Evolutionary Change. In Atlas of Protein Sequence and Structure. in Atlas of Protein Sequence and Structure, Vol. 5 (ed. Dayhoff, M.O.) 345–358 (National Biomedical Research Foundation, Washington, 1978).

    Google Scholar 

  5. Henikoff, S. & Henikoff, J.G. Amino Acid Substitution Matrices from Protein Blocks. Proc. Natl. Acad. Sci. USA 89, 10915–10919. (1992).

    Article  PubMed  CAS  Google Scholar 

  6. Needleman, S.B. & Wunsch, C.D. A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins. J. Mol. Biol. 48, 442–453. (1970).

    Article  Google Scholar 

  7. Smith, T. & Waterman, M. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981).

    Article  PubMed  CAS  Google Scholar 

  8. Rost, B. Enzyme function less conserved than anticipated. J. Mol. Biol. 318, 595–608 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. Levinthal, C. Molecular model-building by computer. Scientific American 214, 42–52 (1966).

    Article  PubMed  CAS  Google Scholar 

  10. Oliveberg, M., Tan, Y.J., Silow, M. & Fersht, A.R. The changing nature of the protein folding transition state: implications for the shape of the free-energy profile for folding. Journal of Molecular Biology 277, 933–943 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. Doyle, R., Simons, K., Qian, H. & Baker, D. Local interactions and the optimization of protein folding. Proteins 29, 282–291 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. Onuchic, J.N., Luthey Schulten, Z. & Wolynes, P.G. Theory of protein folding: the energy landscape perspective. Annual Review of Physical Chemistry 48, 545–600 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. Onuchic, J.N., Socci, N.D., Luthey Schulten, Z. & Wolynes, P.G. Protein folding funnels: the nature of the transition state ensemble. Folding & Design 1, 441–450 (1996).

    Article  CAS  Google Scholar 

  14. Wolynes, P.G. Folding funnels and energy landscapes of larger proteins within the capillarity approximation. Proceedings of the National Academy of Sciences of the United States of America 94, 6170–6175 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. Onuchic, J.N., Wolynes, P.G., Luthey Schulten, Z. & Socci, N.D. Toward an outline of the topography of a realistic protein-folding funnel. Proceedings of the National Academy of Sciences of the United States of America 92, 3626–3630 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. Finkelstein, A. Protein structure: what is it possible to predict now? Current Opinion in Structural Biology 7, 60–71 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. Chothia, C. & Lesk, A. The evolution of protein structures. Cold Spring Harb Symp Quant Biol 52, 399–405 (1987).

    PubMed  CAS  Google Scholar 

  18. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. Journal of Molecular Biology 215, 403–410 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. Barton, G.J. Protein multiple sequence alignment and flexible pattern matching. Methods Enzymol. 183, 403–428. (1990).

    Article  PubMed  CAS  Google Scholar 

  20. Teichmann, S.A., Chothia, C., Church, G.M. & Park, J. Fast assignment of protein structures to sequences using the intermediate sequence library PDB-ISL. 16, 117–124 (2000).

    CAS  Google Scholar 

  21. Bowie, J.U., Luthy, R. & Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. Jones, D.T., Taylor, W.R. & Thornton, J.M. A new approach to protein fold recognition. Nature 358, 86–89 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. Sippl, M.J. & Weitckus, S. Detection of native-like models for amino acid sequences of unknown three-dimensional structure in a data base of known protein conformations. Proteins 13, 258–271 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. Sippl, M.J. Knowledge-based potentials for proteins. Current Opinion in Structural Biology 5, 229–235 (1995).

    CAS  Google Scholar 

  25. Bonneau, R. et al. Rosetta in CASP4: Progress in ab initio protein structure prediction. Proteins Suppl. 5, 119–126 (2001).

    Google Scholar 

  26. Moult, J.,, A.,, Z., Fidelis, K. & Hubbard, T. Critical assessment of methods of protein structure prediction (CASP)-round V. Proteins Suppl. 6, 334–339 (2003).

    Google Scholar 

  27. Moult, J., Fidelis, K., Zemla, A. & Hubbard, T. Critical assessment of methods of protein structure prediction (CASP): round IV. Proteins Suppl 5, 2–6 (2001).

    Google Scholar 

  28. Moult, J., Hubbard, T., Fidelis, K. & Pedersen, J. Critical assessment of methods of protein structure prediction (CASP): round III. Proteins Suppl 3, 2–6 (1999).

    Google Scholar 

  29. Moult, J., Hubbard, T., Bryant, S., Fidelis, K. & Pedersen, J. Critical assessment of methods of protein structure prediction (CASP): round II. Proteins Suppl 1, 2–6 (1997).

    Google Scholar 

  30. Moult, J., Pedersen, J., Judson, R. & Fidelis, K. A large-scale experiment to assess protein structure prediction methods. Proteins 23, ii–v (1995).

    Article  PubMed  CAS  Google Scholar 

  31. Tramontano, A. & Morea, V. Assessment of homology-based predictions in CASP5. Proteins 53 Suppl 6, 352–368 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. Tramontano, A., Leplae, R. & Morea, V. Analysis and assessment of comparative modeling predictions in CASP4. Proteins 45 Suppl 5, 22–38 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this paper

Cite this paper

Tramontano, A., Cozzetto, D. (2005). The Relationship Between Protein Sequence, Structure and Function. In: Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function 8. Springer, Boston, MA. https://doi.org/10.1007/0-306-48662-8_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-48662-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48661-6

  • Online ISBN: 978-0-306-48662-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics