Skip to main content

Molecular and Cellular Levels of Biological Evolution

  • Conference paper
Supramolecular Structure and Function 8
  • 282 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arjan J.A., Visser M., Zeyl C.W., Gerrish P.J., Blanchard J.L. and Lenski R.E. 1999. Diminishing returns from mutation supply rate in asexual populations. Science 283: 404–6.

    PubMed  CAS  Google Scholar 

  2. Boe L., Danielsen M., Knudsen S., Petersen J.B., Maymann J. and Jensen P.R. 2000. The frequency of mutators in populations of Escherichia coli. Mutat Res 448: 47–55.

    PubMed  CAS  Google Scholar 

  3. Bregeon D., Matic I., Radman M. and Taddei F. 1999. Inefficient mismatch repair: genetic defects and down regulation. Journal of Genetics 78: 21–28.

    Article  CAS  Google Scholar 

  4. Caillet-Fauquet P., Defais M. and Radman M. 1977. Molecular mechanism of induced mutagenesis. 1. In vivo replication of the single-stranded ultraviolet-irradiated fX174 phage DNA in irradiated host cells. J. Molec. Biol. 117: 95–112.

    PubMed  CAS  Google Scholar 

  5. Caillet-Fauquet P., Maenhaut-Michel G. and Radman M. 1984. SOS mutator effect in E. coli mutants deficient in mismatch correction. EMBO J. 3: 707–712.

    PubMed  CAS  Google Scholar 

  6. Cairns J., Overbaugh J. and Miller S. 1988. The origins of mutants. Nature 335: 142–145.

    Article  PubMed  CAS  Google Scholar 

  7. Cairns J. and Foster P.L. 1991. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128: 695–701.

    PubMed  CAS  Google Scholar 

  8. Chao L. and Cox E.C. 1983. Competition between high and low mutating strains of Escherichia coli. Evolution 37: 125–134.

    Google Scholar 

  9. Defais M., Fauquet P., Radman M. and Errera M. 1971. Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems. Virology 43: 495–503.

    Article  PubMed  CAS  Google Scholar 

  10. Denamur E., Lecointre G., Darlu P., Acquaviva C., Sayada C., Sunjevaric I., Rothstein R., Elion J., Taddei F., Radman M. and Matic I. 2000. Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell

    Google Scholar 

  11. Drake J.W., Charlesworth B., Charlesworth D. and Crow J.F. 1998. Rates of spontaneous mutation. Genetics 148: 1667–1686.

    PubMed  CAS  Google Scholar 

  12. Echols H. 1981. SOS functions, cancer and inducible evolution. Cell 25: 1–2.

    Article  PubMed  CAS  Google Scholar 

  13. Field D., Magnasco M.O., Moxon E.R., Metzgar D., Tanaka M.M., Wills C. and Thaler D.S. 1999. Contingency loci, mutator alleles, and their interactions. Synergistic strategies for microbial evolution and adaptation in pathogenesis. Ann N Y Acad Sci 870: 378–82.

    PubMed  CAS  Google Scholar 

  14. Fijalkowska I.J., Dunn R.L. and Schaaper R.M. 1993. Mutants of Escherichia coli with increased fidelity of DNA replication. Genetics 134: 1023–30.

    PubMed  CAS  Google Scholar 

  15. Foster P.L. 1999. Mechanisms of stationary phase mutation: a decade of adaptive mutation. Annu Rev Genet 33: 57–88.

    Article  PubMed  CAS  Google Scholar 

  16. Friedberg E.C., Walker G.C. and Siede W. 1995. DNA repair and mutagenesis.

    Google Scholar 

  17. Friedberg E.C., Feaver W.J. and Gerlach V.L. 2000. The many faces of DNA polymerases: strategies for mutagenesis and for mutational avoidance [comment]. Proc Natl Acad Sci U S A 97: 5681–3.

    Article  PubMed  CAS  Google Scholar 

  18. Funchain P., Yeung A., Stewart J.L., Lin R., Slupska M.M. and Miller J.H. 2000. The consequences of growth of a mutator strain of escherichia coli as measured by loss of function among multiple gene targets and loss of fitness]. Genetics 154: 959–70.

    PubMed  CAS  Google Scholar 

  19. Glickman B.W. and Radman M. 1980. Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc. Natl. Acad. Sci. USA 77: 1063–1067.

    PubMed  CAS  Google Scholar 

  20. Gross M.D. and Siegel E.C. 1981. Incidence of mutator strains in Escherichia coli and coliforms in nature. Mutat. Res. 91: 107–110.

    Article  PubMed  CAS  Google Scholar 

  21. Harris R.S., Longerich S. and Rosenberg S.M. 1994. Recombination in adaptive mutation. Science 264: 258–260.

    PubMed  CAS  Google Scholar 

  22. Jyssum K. 1960. Observation of two types of genetic instability in Escherichia coli. Acta Pathol. Microbiol. Immunol. Scand. 48: 113–120.

    CAS  Google Scholar 

  23. LeClerc J.E., Li B., Payne W.L. and Cebula T.A. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274: 1208–1211.

    Article  PubMed  CAS  Google Scholar 

  24. Mao E.F., Lane L., Lee J. and Miller J.H. 1997. Proliferation of mutators in a cell population. J. Bacteriol. 179: 417–422.

    PubMed  CAS  Google Scholar 

  25. Matic I., Radman M., Taddei F., Picard B., Doit C., Bingen E., Denamur E. and Elion J. 1997. Highly variable mutation rates in commensal and pathogenic E. coli. Science 277: 1833–1834.

    Article  PubMed  CAS  Google Scholar 

  26. McKenzie G.J., Harris R.S., Lee P.L. and Rosenberg S.M. 2000. The SOS response regulates adaptive mutation. Proc Natl Acad Sci U S A 97: 6646–51.

    Article  PubMed  CAS  Google Scholar 

  27. Milkman R. and McCane M. 1995. DNA sequence variation and recombination in E. coli.. In: Population Genetics of Bacteria, (S. Baumberg, J.P.W. Young, M.H. Wellington & J.R. Saunders, eds) pp 127–142, Cambridge University Press, Cambridge.

    Google Scholar 

  28. Modrich P. and Lahue R. 1996. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65: 101–133.

    Article  PubMed  CAS  Google Scholar 

  29. Napolitano R., Janel-Bintz R., Wagner J. and Fuchs R.P.P. 2000. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J. in press

    Google Scholar 

  30. Nelson J.R., Lawrence C.W. and Hinkle D.C. 1996. Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science 272: 1646–9.

    PubMed  CAS  Google Scholar 

  31. Ninio J. 1991. Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates. Genetics 129: 957–962.

    PubMed  CAS  Google Scholar 

  32. Oliver A., Canton R., Campo P., Baquero F. and Blazquez J. 2000. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288: 1251–1253.

    Article  PubMed  CAS  Google Scholar 

  33. Radman M. 1974. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis.

    Google Scholar 

  34. Radman M., Dohet C., Bourguignon M.-F., Doubleday O.P. and Lecomte P. 1981. High fidelity devices in the reproduction of DNA.

    Google Scholar 

  35. Radman M., Matic I., Halliday J.A. and Taddei F. 1995. Editing DNA replication and recombination by mismatch repair: from bacterial genetics to mechanisms of predisposition to cancer in humans. Phil. Trans. R. Soc. Lond. B 347: 97–103.

    CAS  Google Scholar 

  36. Radman M. 1999. Enzymes of evolutionary change. Nature 401: 866–7, 869.

    Article  PubMed  CAS  Google Scholar 

  37. Radman M., Matic I. and Taddei F. 1999. Evolution of evolvability. Ann. N. Y. Acad. Sci. 870: 146–155.

    PubMed  CAS  Google Scholar 

  38. Radman M., Taddei F. and Matic I.2000. Evolution-driving genes. Res. Microbiol. 151: 91–95.

    Article  PubMed  CAS  Google Scholar 

  39. Rayssiguier C., Thaler D.S. and Radman M. 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342: 396–401.

    Article  PubMed  CAS  Google Scholar 

  40. Sniegowski P.D., Gerrish P.J. and Lenski R.E. 1997. Evolution of high mutation rates in experimental populations of E. coli. Nature 387: 703–705.

    Article  PubMed  CAS  Google Scholar 

  41. Stambuk S. and Radman M. 1998. Mechanism and control of interspecies recombination in Escherichia coli. I. Mismatch repair, methylation, recombination and replication functions. Genetics 150: 533–542.

    PubMed  CAS  Google Scholar 

  42. Taddei F., Matic I. and Radman M. 1995. Cyclic AMP-dependent SOS induction and mutagenesis in resting bacterial populations. Proc. Natl. Acad. Sci. USA 92: 11736–11740.

    PubMed  CAS  Google Scholar 

  43. Taddei F., Radman M., Maynard-Smith J. Toupance B., Gouyon P.H. and Godelle B. 1997. Role of mutator alleles in adaptive evolution. Nature 387: 700–702.

    Article  PubMed  CAS  Google Scholar 

  44. Tenaillon O., Toupance B., Le Nagard H., Taddei F. and Godelle B. 1999. Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. Genetics 152: 485–93.

    PubMed  CAS  Google Scholar 

  45. Tenaillon O., Le Nagard H., Godelle B. and Taddei F. 2000. Mutator and Sex in Bacteria: Conflict between Adaptive Strategies. PNAS in press

    Google Scholar 

  46. Treffers H.P., Spinelli V. and Belser N.O. 1954. A factor (or mutator gene) influencing mutation rates in E. coli. Proc. Natl. Acad. Sci (USA) 40: 1064–1071.

    CAS  Google Scholar 

  47. Tröbner W. and Piechocki R. 1984. Selection against hypermutability in Escherichia coli during long term evolution. Mol. Gen. Genet. 198: 177–178.

    PubMed  Google Scholar 

  48. Varlet I., Dohet C., Petranovic M., Radman M. and Brooks P. 1991. Mismatch repair strand discrimination in Xenopus is directed by strand termini and not by hemimethylation.

    Google Scholar 

  49. Villani G., Boiteux S. and Radman M. 1978. Mechanisms of ultraviolet induced mutagenesis: extent and fidelity of in vitro DNA synthesis on irradiated templates. Proc. Natl. Acad. Sci 75: 3037.

    PubMed  CAS  Google Scholar 

  50. Vulic M., Dionisio F., Taddei F. and Radman M. 1997. Molecular Keys to Speciation: DNA Polymorphism and the Control of Genetic Exchange in Enterobacteria. Proc. Natl. Acad. Sci. USA 94: 9763–9767.

    PubMed  CAS  Google Scholar 

  51. Wagner J., Gruz P., Kim S.R., Yamada M., Matsui K., Fuchs R.P. and Nohmi T. 1999. The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. Mol Cell 4: 281–6.

    Article  PubMed  CAS  Google Scholar 

  52. Wang Y.C., Maher V.M. and McCormick J.J. 1991. Xeroderma pigmentosum variant cells are less likely than normal cells to incorporate dAMP opposite photoproducts during replication of UV-irradiated plasmids. Proc Natl Acad Sci U S A 88: 7810–4.

    PubMed  CAS  Google Scholar 

  53. Weigle J.J. 1953. Induction of mutation in a bacterial virus. Proc. Natl. Acad. Sci. USA 39:628–636.

    PubMed  CAS  Google Scholar 

  54. Witkin E.M. 1967. The radiation sensitivity of Escherichia coli B: a hypothesis relating filament formation and prophage induction. Proc. Natl. Acad. Sci. USA 57: 1275–1279.

    PubMed  CAS  Google Scholar 

  55. Zhang Y., Yuan F., Wu X. and Wang Z. 2000. Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase iota. Mol Cell Biol 20: 7099–108.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this paper

Cite this paper

Radman, M. (2005). Molecular and Cellular Levels of Biological Evolution. In: Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function 8. Springer, Boston, MA. https://doi.org/10.1007/0-306-48662-8_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-48662-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48661-6

  • Online ISBN: 978-0-306-48662-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics