Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • As, P., R. Tanso, and F. Fonnum (1989). Stimulation of peripheral cholinergic nerves by glutamate indicates a new peripheral glutamate receptor. Eur. J. Pharmacol. 164, 93–102.

    Google Scholar 

  • Allen, D.H., H. Delohery and G. Baker (1987). Monosodium L-glutamate-induced asthma. J. Allergy Clin. Immunol. 80, 530–537.

    PubMed  CAS  Google Scholar 

  • Armour, J.a., D.A. Murphy, B.X. Yuan, S. MacDonald, and D.A. Hopkins (1997). Gross microscopic anatomy of the human intrinsic cardiac nervous system. Anatom. Rec. 247, 289–298.

    CAS  Google Scholar 

  • Asztely, F. and B. Gustafasson (1996). Ionotropic glutamate receptors: Their possible role in the expression of hippocampal synaptic plasticity. Mol. Neurobiol. 12, 1–11.

    PubMed  CAS  Google Scholar 

  • Beal, M.F. (1992). Mechanism of excitotoxicity in neurologic disease. FASEB J. 6, 3338–3344.

    PubMed  CAS  Google Scholar 

  • Bhanga, P.S., P.G. Genever, G.J. Spencer, T.S. Grewal, and T.M. Skerry (2001). Evidence for targeted vesicular glutamate exocytosis in osteoblasts. Bone 29, 16–23.

    Google Scholar 

  • Bertrand, G., R. Gross, R. Puech, M.M. Loubatieres-Mariana, and J. Bockaert (1992). Evidence for a glutamate receptor of the AMPA subtype which mediates insulin release from rat perfused pancreas. Br. J. Pharmacol. 106, 354–359.

    PubMed  CAS  Google Scholar 

  • Bertrand, G., R. Gross, R. Puech, M.M. Loubatieres-Mariana, and J. Bockaert (1993). Glutamate stimulates glucagon secretion via an excitatory amino acid receptor of the AMPA subtype in rat pancreas. Br. J. Pharmacol. 237, 45–50.

    CAS  Google Scholar 

  • Bruni, J.E., R. Bose, C. Pinsky, and G. Gavin (1991). Circumventricular organ origin of domoic acid-induced neuropathology and toxicology. Brain Res. Bull. 26, 419–424.

    PubMed  CAS  Google Scholar 

  • Burns, G.A., K.E. Stephens, and J.A. Benson (1994). Expression of mRNA for N-methyl-D-aspartate (NMDAR 1) receptor by the enteric neurons of the rat. Neurosci. Lett. 170, 87–90.

    PubMed  CAS  Google Scholar 

  • Butcher, S.P., M. Sandberg, H. Hagberg, and A. Hamberger (1987). Cellular origins of endogenous amino acids released into the extracellular fluid of the rat striatum during severe insulin-induced hypoglycemia. J. Neurochem. 48, 722–723.

    PubMed  CAS  Google Scholar 

  • Carlton, S.M., G.L. Hargett, and R.E. Coggeshall (1995). Localization and activation of glutamate receptors in unmyelinated axons of rat glaborous skin. Neurosci. Lett. 197, 25–28.

    PubMed  CAS  Google Scholar 

  • Chaudhari, N., H. Yang, C. Lamp, E. Delay, C. Cartford, T. Than et al. (1996). The taste of monosodium glutamate: Membrane receptors in taste buds. J. Neurosci. 16, 3817–3826.

    PubMed  CAS  Google Scholar 

  • Chenu, C. (2002). Glutamatergic innervation in bone. Microsc. Res. Tech. 58, 70–6.

    PubMed  CAS  Google Scholar 

  • Chenu, C., C.M. Serre, C. Raynal, B. Burt-Pichat, and P.D. Delmas (1997). Glutamate receptors are expressed by bone cells and are involved in bone reabsorption. Bone 22, 295–299.

    Google Scholar 

  • Chen, G.-Q., C. Cui, M.L. Mayer, and E. Gouaux (1999). Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–819

    PubMed  CAS  Google Scholar 

  • Chiang, A.S., Wy. Lin, Pszczolkowski, T.F. Fu, Sl. Chiu, and G. Holbrook (2002). Insect NMDA receptors mediate juvenile hormone biosynthesis. PNAS 99, 37–42.

    PubMed  CAS  Google Scholar 

  • Chiu, J., R. DeSalle, H.M. Lam, L. Meisel, and G. Coruzzi (1999). Molecular evolution of glutamate receptors: A primitive signaling mechanisms that existed before plants and animals diverged. Mol. Biol. Evol. 16, 826–838.

    PubMed  CAS  Google Scholar 

  • Choi, D.W. (1992). Excitotoxic Cell Death. J. Neurobiol. 23, 1261–1276.

    PubMed  CAS  Google Scholar 

  • Clark, R.F., S.R. Williams, S.P. Nordt, A.S. Manoguerra (1999). A review of selected seafood poisoning. Undersea Hyperb Med. 26, 175–184.

    PubMed  CAS  Google Scholar 

  • Coggeshall, R.E. and S.M. Carlton (1998). Ultrastructural analysis of NMDA, AMPA, and kainate receptors on myelinated and unmyelinated axons in the periphery. J. Comp. Neurol. 391, 78–86.

    PubMed  CAS  Google Scholar 

  • Conn, P.J., and J.P. Pin (1997). Pharmacology and functions of metabotropic receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237.

    PubMed  CAS  Google Scholar 

  • Cunningham, M.D., J.W. Ferkany, and S.J. Enna (1994). Excitatory amino acid receptors: A gallery of new targets for pharmacological intervention. Life Sci. 54, 135–148.

    PubMed  CAS  Google Scholar 

  • Daveport, R. (2002). Glutamate receptors in plants. Ann. Bot. 90, 49–557.

    Google Scholar 

  • Demenes, D., A. Lleixa, and C.J. Dechesne (1995). Cellular and subcellular localization of AMPA-selective glutamate receptors in the mammalian peripheral vestibular system. Brain Res. 671, 83–94.

    Google Scholar 

  • Deng, A., J.M. Valdivielso, K.A. Munger, R.C. Blantz, and S.C. Thomson (2002). Vasodilatory N-methyl-D-aspartate receptors are constitutively expressed in rat kidney. J. Am. Soc. Nephrol. 13, 1381–1384.

    PubMed  CAS  Google Scholar 

  • Dierkes, P.W., P. Hochstrate, and W.R. Schlue (1996). Distribution and functional properties of glutamate receptors in the leech central nervous system. J. Neurophysiol. 75, 2312–2321.

    PubMed  CAS  Google Scholar 

  • DiMicco, J. and A.J. Monroe (1996). Stimulation of metabotropic glutamate receptors in the dorsal-medial hypothalamus elevates heart rate in rat. Am. J. Physiol. 270, 115–1121.

    Google Scholar 

  • Dingledine, R., K. Borges, D. Bowie, and S.F. Traynelis (1999). The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61.

    PubMed  CAS  Google Scholar 

  • Dingledine, R. and C.J. McBain (1994). Excitatory amino acids transmitters. In G.J. Siegal, R.W. Agronoff, B.W. Albers, and P.B. Molinof (eds), Basic Neurochemistry. Raven Press, NY, pp. 367–387.

    Google Scholar 

  • Erdo, S.L. (1990). The GABAergic system in the human female genital organs. In S.L. Erdo (ed.), GABA: Outside the CNS. Springer-Verlag, NY, pp. 183–197.

    Google Scholar 

  • Erdo, S.L. (1991). Excitatory amino acid receptors in the mammalian periphery. TIBS 121, 426–429.

    Google Scholar 

  • Farooqui, A.A. and L.A. Horrocks (1994). Involvement of glutamate receptors, lipases, and phospholipases in long-term potentiation and neurodegeneration. J. Neurosci. Res. 38, 6–11.

    PubMed  CAS  Google Scholar 

  • Fisher, G.H., A. Aniello, A. Vetere, L. Padula, G.P. Cusano, and E.H. Man (1991). Free D-Amino acid and D-Alanine in normal and Alzheimer brain. Brain Res. Bull. 26, 983–985.

    PubMed  CAS  Google Scholar 

  • Gallo, V. and Ghiani (2002). Glutamate receptors in glia: New cells, new inputs and new functions. TIPS 21, 252–258.

    Google Scholar 

  • Gasic, G.P. and M. Hollmann (1992). Molecular neurobiology of glutamate receptors. Ann. Rev. Physiol. 54, 507–536.

    CAS  Google Scholar 

  • Genever, P.G., D.J.P. Wilkinson, A.J. Patton, N.M. Peet, Y. Hong, A. Mathur et al. (1999). Expression of a functional N-methyl-D-aspartate-type glutamate receptor by bone marrow megakaryocytes. Blood 93, 2876–2883.

    PubMed  CAS  Google Scholar 

  • Gill, S.S. and O.M. Pulido (2001). Glutamate receptors in peripheral tissues: Current knowledge, future research and implications for toxicology. Toxicol. Pathol. 29, 208–223.

    PubMed  CAS  Google Scholar 

  • Gill, S.S., O.M. Pulido, R.W. Mueller, and P.F. McGuire (1998). Molecular and immunological characterization of the ionotropic glutamate receptors in the rat heart. Brain Res. Bull. 46, 429–435.

    PubMed  CAS  Google Scholar 

  • Gill, S.S., O.M. Pulido, R.W. Mueller, and P.F. McGuire (1999). Immunological characterization of the metabotropic glutamate receptors in the rat heart. Brain Res. Bull. 48, 143–146.

    PubMed  CAS  Google Scholar 

  • Gill, S.S., O.M. Pulido, R.W. Mueller, and P.F. McGuire (2000). Potential target sites in peripheral tissues for excitatory neurotransmission and excitotoxicity. Toxicol. Pathol. 28, 277–284.

    PubMed  CAS  Google Scholar 

  • Gonoi, T., N. Mizuno, N. Inagaki, H. Kuromi, Y. Seino, J. Miyazaki et al. (1994). Functional neuronal ionotropic glutamate receptors are expressed in the non-neuronal cell line MIN6. J. Biol. Chem. 269, 16989–16992.

    PubMed  CAS  Google Scholar 

  • Grazia, U., M. Storto, G. Battaglia, M.P. Felli, M. Maroder, A. Gulino et al. (1999). Evidence for the expression of metabotropic receptors in the thymic cells. 29th Annual Meeting Miama Beach, Fla. Oct. 23–28. Society of Neuroscience. P.449. Ab.177.16.

    Google Scholar 

  • Grunder, T., K. Kohler, A. Kaletta, and E. Guenther (2002). The distribution and developmental regulation of NMDA receptor subunit proteins in the outer and inner retina of the rat. J Neurobiol. 44; 333–342.

    Google Scholar 

  • Gu., Y., P.G. Genever, T.M. Skerry, and S.J. Publicover (2002). The NMDA type glutamate receptors expressed by primary rat osteoblasts have the same electrophysiological characteristics as neuronal receptors. Calcif. Tissue Int. 70, 194–203.

    PubMed  CAS  Google Scholar 

  • Gulland, F. (2000). Domoic acid toxicity in California sea lion (Zalophus californianus) stranded along the central California coast, May–October 1998. Report to the National Marine Fisheries Service Working Group on Unusual Marine Mammal Mortality Events. U.S. Dep. Commer., MOAA Tech. Memo, NMFS-OPR-17; pp. 1–45.

    Google Scholar 

  • Hampson, D.R. and J.L. Manalo (1998). The activation of the glutamate receptors by kainic acid and domoic acid. Nat. Toxins 6, 153–158.

    PubMed  CAS  Google Scholar 

  • Hardy, M., D. Younkin, Tang C.M., J. Pleasure, Q.Y. Shi, M. Williams et al. (1994). Expression of non-NMDA glutamate receptor channel genes by clonal human neurons. J. Neurochem. 63, 482–489.

    PubMed  CAS  Google Scholar 

  • Harry, G.J. (1999). Basic principles of disturbed CNS and PNS functions. In R.J.M. Niesink, R.M.A. Jaspers, L.M.W. Kornet, J.M. van Ree, and H.A. Tislosn (eds), Introduction to Neurobehavioral Toxicology: Food and Environment. CRC Press, Washington, DC, pp. 115–162.

    Google Scholar 

  • Hayashi, Y., M.M. Zviman, J.G. Brand, J.H. Teeter, and D. Restrepo (1996). Measurement of membrane potential and [Ca2+] in cell ensembles: Application to the study of glutamate taste in mice. Biophys. J. 71, 1057–1070.

    PubMed  CAS  Google Scholar 

  • Haxhiu, M.A., B. Erokwu, and I.A. Dreshaj (1997). The role of excitatory amino acids in airway reflex responses in anaesthetized dogs. J. Auton. Nerv. Syst. 67, 192–199.

    PubMed  CAS  Google Scholar 

  • Herman, B. (ed.) (2002). Glutamate and Addiction. Humana Press.

    Google Scholar 

  • Heyman, S., K. Spokes, S. Rosen, and F.H. Epstein (1992). Mechanism of glycine protection in hypoxia: Analogies with glycine receptor. Kidney Int. 42, 41–45.

    PubMed  CAS  Google Scholar 

  • Hinoi, E. and Y. Yoneda (2001). Expression of GluR 6/7 subunits of kainate receptors in rat adenohypophysis. Neurochem. Inte. 38, 539–547.

    CAS  Google Scholar 

  • Hinoi, E., S. Fujimori, T. Takarada, H. Taniura, and Y. Yoneda (2001). Group III metabotropic glutamate receptors in rat cultured calvarial osteoblasts. Biochem. Biophys. Res. Commun. 281, 341–346.

    PubMed  CAS  Google Scholar 

  • Hinoi, E., S. Fujimori, M. Yoneyama, and Y. Yoneda (2002a). Blockade by N-methyl-d-aspartate of elevation of activator protein-1 binding after stress in rat adrenal gland. J. Neurosci. Res. 70, 161–171.

    PubMed  CAS  Google Scholar 

  • Hinoi, E., S. Fujimori, A. Takemori, H. Kurabayashi, Y. Nakamura, and Y. Yoneda (2002b). Demonstration of expression of mRNA for particular AMPA and kainate receptor subunits in immature and mature cultured rat calvarial osteoblasts. Brain Res. 943, 112–116.

    PubMed  CAS  Google Scholar 

  • Hinoi, E., S. Fujimori, T. Takarada, H. Taniura, and Y. Yoneda (2002c). Facilitation of glutamate release by ionotropic glutamate receptors in osteoblasts. Biochem. Biophys. Res. Commun. 297, 452–458.

    PubMed  CAS  Google Scholar 

  • Hinoi E., S. Fujimori, Y. Nakamura, V.J. Balcar, K. Kubo, K. Ogita et al. (2002d). Constitutive expression of heterlogous N-methyl-D-aspartate receptors subunits in rat adrenal medulla. J. Neurosci. Res. 68, 36–45.

    PubMed  CAS  Google Scholar 

  • Hollmann, M. and S. Heinemann (1994). Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.

    PubMed  CAS  Google Scholar 

  • Imai, K., T. Fukushima, T. Sante, H. Homma, Y. Huang, K. Sakai et al. (1996). Distribution of free D-amino acids in tissues and body fluids of vetebrates. Enantiomer 2, 143–144.

    Google Scholar 

  • Inagaki, N., H. Kuromi, T. Gonoi, Y. Okamoto, H. Ishida, Y. Seino et al. (1995). Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J. 9, 686–691.

    PubMed  CAS  Google Scholar 

  • Iverson, F., J. Truelove, L. Tryphonas, and E.A. Nera (1990). The toxicology of domoic acid administered systemically to rodents and primates. Can. Dis. Wkly. Rep. 16(Suppl.1E), 15–19.

    PubMed  Google Scholar 

  • Itzstein, C., H. Cheynel, B. Burt-Pichat, B. Merle, L. Espinosa, P.D. Delmas et al. (2001). Molecular identification of NMDA glutamate receptors expressed in bone cells. J. Cell Biochem. 82, 134–44.

    PubMed  CAS  Google Scholar 

  • Jackson, E.K., R.A. Branch, H.S. Margoius, and J.A. Oates (1985). Physiological functions of the renal prostaglandin, renin and kallikrein systems. In D.W. Seldin, and G. Giebisch (eds), The Kidney—Physiology and Pathology. Raven Press, NY, pp. 613–644.

    Google Scholar 

  • Kamatani, Y., H. Minakata, P.T.M. Kenny, T. Iwashita, K. Watanabe, K. Funase et al. (1989). Achatin-I, an endogenous neuroexcitatory tetrapeptide from Achatina fulica ferussac containing a D-amino acid residue. Biochem. Biophys. Res. Commun. 160, 1015–1020.

    PubMed  CAS  Google Scholar 

  • Kang, J. and Turano (2003). The putative glutamate receptors 1.1 (atGluR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. PNAS 100, 6872–6877.

    PubMed  CAS  Google Scholar 

  • Kerr, D.S. and A.N. Razak (2000). Domoic acid induces tolerance to domoic acid in hippocampal slices. Int. J. Neurosci. 109, 186

    Google Scholar 

  • Kiyama, H., K. Sato, and M. Tohyama (1993). Characteristic localization of non-NMDA type glutamate receptor subunits in the rat pituitary gland. Mol. Br. Res. 19, 262–268.

    CAS  Google Scholar 

  • Krogsgaard-Larsen, P. and J.J. Hansen (1992). Naturally occurring excitatory amino acids as neurotoxins and leads in drug design. Toxicol. Lett. 64/65, 409–416.

    Google Scholar 

  • La Bella, V. and Piccoli (2000). Differential effect of B-N-oxalylamino-L-alanine, the Lathyrus sativus, neurotoxin, and (+_)-a-amino-3-hydroxy-5-methylisoxazole-4-propionate on the excitatory amino acid and taurine levels in the brain of freely moving rats. Neurochem. Int. 36, 523–530.

    PubMed  Google Scholar 

  • Lam, H.M., J. Chiu, M.H. Hsieh, L. Meisel, I.C. Oliveira, M. Shin et al. (1998). Glutamate receptor genes in plants. Nature 396, 125–126.

    PubMed  CAS  Google Scholar 

  • Lara, H. and W. Bastos-Ramos (1988). Glutamate and kainate effects on the noradrenergic neurons innervating rat vas deferens. J. Neurosci. Res. 19, 239–244.

    PubMed  CAS  Google Scholar 

  • Leung, J.C., B.R. Travis, J.W. Verlander, S.K. Sandhu, S.G. Yang, A.H. Zea et al. (2002). Expression and developmental regulation of the NMDA receptor subunits in the kidney and cardiovascular system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R964–R971.

    PubMed  Google Scholar 

  • Liu, P.H., S.S.W. Tay, and S.K. Leong (1997). Localization of glutamate receptors subunits of the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type in the pancreas of newborn guinea pig. Pancreas 14, 360–368.

    PubMed  CAS  Google Scholar 

  • Lipton, S.A. (1993). Prospects for clinically tolerated NMDA antagonists: Open-channel blockers and alternative redox states of nitric oxide. Trends Neuorsci. 16, 527–532.

    CAS  Google Scholar 

  • Lipton, S.A. and H.E. Gendelman (1995). Dementia associated with the acquired immunodeficiency syndrome. N. Engl. J. Med. 332, 934–940.

    PubMed  CAS  Google Scholar 

  • Lipton, S.A. and P.A. Rosenberg (1994). Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330, 613–622.

    PubMed  CAS  Google Scholar 

  • Lucas, D.R. and J.P. Newhouse (1957). The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol. 58, 193–201.

    PubMed  CAS  Google Scholar 

  • Maricq, A.V., E. Peckol, M. Driscoll, C.I. Bargmann (1996). Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor. Nature 379, 749–781.

    CAS  Google Scholar 

  • Meldrum, B.S. (1994). The role of glutamate in epilepsy and other central nervous disorders. Neurology 44, 14–23.

    Google Scholar 

  • Mick, G. (1995). Non-N-methyl-D-aspartate glutamate receptors in glial cells and neurons of the pineal gland in a higher primate. Neuroendocrinology 61, 256–264.

    PubMed  CAS  Google Scholar 

  • Michaelis, E. (1998). Molecular biology of glutamate receptors in the central nervous system and their role in excitoxicity, oxidative stress and aging. Prog. Neurobiol. 54, 369–415.

    PubMed  CAS  Google Scholar 

  • Miller, G.W., E.A. Lock, and R.G. Schnellman (1992). Strychnine and glycine protect renal proximal tubules from various nephrotoxicants and act in the late phase of necrotic cell injury. Toxicol. App. Pharmacol. 125, 192–197.

    Google Scholar 

  • Miller, S., J.P. Kesslak, C. Romano, and C.W. Cotman (1996). Roles of metabotropic receptors in brain plasticity and pathology. Ann New York Academy of Sciences. 757, 460–474.

    Google Scholar 

  • Moghaddam, B. (1999). Glutamate and schizophrenia. Sci. Med. March/April, 22–31.

    Google Scholar 

  • Montecucchi, P.C., R. de Castiglione, S. Pianio, L. Gozzini, and V. Erspamier (1981). Amino acid composition and sequence of Dermorphin, a novel opiate-like peptide from skin of Phyllomedusa sauvagei. Int. J. Peptide Protein Res. 17, 275–283.

    CAS  Google Scholar 

  • Molnar, E., A. Varadi, R.A.J. McIlhinney, and S.J.H. Ashcroft (1995). Identification of functional ionotropic glutamate receptor proteins in the pancreatic B-cells and in the islets of Langerhans. FEBS Lett. 371, 253–257.

    PubMed  CAS  Google Scholar 

  • Moloney, K.G. (2002). Excitatory amino acids. Nat. Prod. Rep. 19, 597–616.

    PubMed  CAS  Google Scholar 

  • Morhenn V.B., N.S. Waleh, J.N. Mansbridge, D. Unson, A. Zolotorev, P. Cline et al. (1994). Evidence for an NMDA receptor subunit in human keratinocytes and rat cardiocytes. Eur. J. Pharmacol. 268, 409–414.

    PubMed  CAS  Google Scholar 

  • Moroni, F., S. Luzzi, S.F. Micheli, and L. Zilleti (1986). The presence of N-methyl-D-aspartate type receptors for glutamic acid in the guinea pig myenteric plexus. Neurosci. Lett. 68, 57–62.

    PubMed  CAS  Google Scholar 

  • Mueller, R., S. Gill, O. Pulido, K. Kapal, and P. Smyth (1996). Demonstration and differential localization of glutamate receptors in the rat and monkey (Macaca fascicularis). FASEB J. 9, LB146.

    Google Scholar 

  • Mueller, R., S. Gill, and O. Pulido (2003). The monkey (Macaca Fascicularis) heart neural structures and conducting system: An immunochemical study of selected neural biomarkers and glutamate receptors. Toxicol. Pathol. 31, 227–234.

    PubMed  CAS  Google Scholar 

  • Olney, J.W. (1969). Brain lesions, obesity and other disturbances in the mice treated with monosodium glutamate. Science 164, 719–721.

    PubMed  CAS  Google Scholar 

  • Olney, J.W. (1989). Excitotoxicity: An overview. Can. Dis. Wkly. Rep. 16(Suppl.1E), 49–58.

    Google Scholar 

  • Olney, J.W. (1994). Excitotoxins in foods. NeuroToxicology 15, 535–544.

    PubMed  CAS  Google Scholar 

  • Otamiri, T. (1988). Quinacrine prevention of intestinal ischaemic mucosal damage is partly mediated through inhibition of intraluminal phospholipase A2. Agents Actions 25, 378–384.

    PubMed  CAS  Google Scholar 

  • Ozawa, S., H. Kamiya, and K. Tsuzuki (1998). Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 54, 581–618.

    PubMed  CAS  Google Scholar 

  • Palmada, M. and Centelles (1998). Excitatory amino acid neurotransmission: Pathways for metabolism, storage and reuptake of glutamate in brain. Front. in Biosci. D701–718.

    Google Scholar 

  • Peng, Y.G., T.B. Taylor, R.E. Finch, R.C. Switzer, and J.S. Ramsdell (1994). Neuroexcitatory and neurotoxic actions of the amnesic shellfish poison, domoic acid. Neuroreport 5, 981–985.

    PubMed  CAS  Google Scholar 

  • Pentreath, V.W. and N.D. Slamon (2000). Astrocyte phenotype and prevention against oxidative damage in neurotoxicity. Hum. Exp. Toxicol. 1, 641–649.

    Google Scholar 

  • Perl, T.M., L. Bedard, T. Kosatsky, J.C. Hockin, E.C.D. Todd et al. (1990). An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N. Engl. J. Med. 322, 1775–1780.

    PubMed  CAS  Google Scholar 

  • Price, M.D., J.W. Olney, O.H. Lowry, and S. Buchsbaum (1981). Uptake of exogenous glutamate and aspartate by circumventricular organs but not other regions of brain. J. Neurochem. 36, 1734–1780.

    Google Scholar 

  • Purcell, W.M., K.M. Doyle, C. Westgate, and C.K. Atterwill (1996). Characterization of a functional polyamine site on rat mast cells:Association with a NMDA receptor macrocomplex. J. Neuroimmunol. 65, 49–53.

    PubMed  CAS  Google Scholar 

  • Rockhold, R.W., C.G. Acuff, and B.R. Clower (1989). Excitotoxin-induced myocardial necrosis. Eur. J. Pharmacol. 166, 571–576.

    PubMed  CAS  Google Scholar 

  • Ross, I.A., W. Johnson, P.P. Sapienza, C.S. Kim (2000). Effects of the seafood toxin domoic acid on glutamate uptake by rat astrocytes. Food Chem. Toxicol. 38, 1005–1011.

    PubMed  CAS  Google Scholar 

  • Rzeski, W., C. Ikonomidou, L. Turski (2002). Glutamate antagonists limit tumor growth. Biochem. Pharmacol. 64, 1195–200.

    PubMed  CAS  Google Scholar 

  • Said, S.I. (1999). Glutamate receptors and asthmatic airway disease. TIBS. 20, 132–135.

    CAS  Google Scholar 

  • Said, S.I., H.I. Berisha, and H. Pakbaz (1996). Excitotoxicity in the lung: N-methyl-D-aspartate induced, nitric oxide-dependent, pulmonary edema is attenuated by vasoactive intestinal peptide and by inhibitors of poly (ADP-ribose) polymerase. Proc. Natl. Acad. Sci. USA 93, 4688–4692.

    PubMed  CAS  Google Scholar 

  • Said, S.I., R.D. Dey, and K. Dickman (2001). Glutamate signalling in lung. Trends Pharmacol. Sci. 22, 344–345.

    PubMed  CAS  Google Scholar 

  • Schoepp, D.D. (1994). Novel function for subtypes of metabotropic glutamate receptors. Neurochem. Int. 24, 439–449.

    PubMed  CAS  Google Scholar 

  • Schofield, J.N., I.N. Day, R.J. Thompson, and Y.H. Edwards (1995). PGP 9.5, a ubiquitin C-terminal hydrolase; pattern of mRNA and protein expression during neural development in the mouse. Dev. Brain Res. 85, 229–238.

    CAS  Google Scholar 

  • Seeber, S., K. Becker, T. Rau, T. Eschenhagen, C.M. Becker, and M. Herkert (2000). Transient expression of NMDA receptor subunit NR2B in the developing rat heart. J. Neurochem. 75, 2472–2477.

    PubMed  CAS  Google Scholar 

  • Scholin, C.A., F. Gulland, G.J. Doucette, S. Benson, M. Busman, F.P. Chavez et al. (2000). Mortality of sea lions along the central coast linked to a toxic diatom bloom. Nature 403, 80–84.

    PubMed  CAS  Google Scholar 

  • Shannon, H.E. and B.D. Sawyer (1989). Glutamate receptors of the N-methyl-D-aspartate subtype in the myentric plexus of the guinea pig ileum. J. Pharmacol. Exp. Ther. 251, 518–523.

    PubMed  CAS  Google Scholar 

  • Snyder, S.H. and C.D. Ferris (2000). Novel transmitters and their neuropsychiatric relevance. Am. J. Psychiatry 157, 1738–1751.

    PubMed  CAS  Google Scholar 

  • Storto, M., U.D. Grazia, T. Knoppel, P.L. Canonica, A. Copani, P. Richelmi et al. (2000). Selective Blockade of mGluR 5 metabotropic glutamate receptors protects rat hepatocytes against hypoxic damage. Hepatology 31, 649–655.

    PubMed  CAS  Google Scholar 

  • Stumer, T., M. Amar, R.J. Harvey, I. Bermudez, J.V. Minnen, and M.G. Darlison (1996). Structure and pharmacological properties of a molluscan glutamate-gated cation channel and its likely role in the feeding behavior J. Neurosci. 16, 2869–2880.

    Google Scholar 

  • Sureda, F., A. Copani, V. Bruno, T. Knopel, G. Meltzger, and F. Nicoletti (1997). Metabotropic glutamate receptor agonists stimulate polyphosphoinositide hydrolysis in primary cultures of rat hepatocytes. Eur. J. Pharmacol. 338, R1–R2.

    PubMed  CAS  Google Scholar 

  • Tryphonas, L., J. Truelove, F. Iverson, E.C.D. Todd, and E.A. Nera (1990). Neuropathology of experimental domoic acid poisoning in non-human primates and rats. Can. Dis. Wkly. Rep. 16(Suppl.1E), 75–81.

    PubMed  Google Scholar 

  • Teitelbaum, J., R.S. Zatorre, S. Carpenter, D. Gendron, A.C. Evans, A. Gjedde et al. (1990). Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N. Engl. J. Med. 322, 1781–1787.

    PubMed  CAS  Google Scholar 

  • Thompson, R.J., J.F. Doran, P. Jackson, A.P. Dhillon, and J. Rode (1983). PGP 9.5—a new marker for vertebrate neurons and neuroendocrine cells. Brain Res. 278, 224–228.

    PubMed  CAS  Google Scholar 

  • Truelove, J., R. Mueller, O. Pulido, and F. Iverson (1996). Subchronic toxicity study of domoic acid in the rat. Food Chem. Toxicol. 34, 525–529.

    PubMed  CAS  Google Scholar 

  • Tsai, L.H., Y.J. Lee, and J.Y. Wu (1994). Effect of L-glutamate acid on acid secretion and immunohistochemical localization of glutamatergic neurons in the rat stomach. J. Neurosci. Res. 38, 188–195.

    PubMed  CAS  Google Scholar 

  • Tsai, L.H., Y.J. Lee, and J.Y. Wu (1999). Effect of excitatory amino acid neurotransmitters on acid secretion in the rat stomach. J. Biomed. Sci. 6, 36–44.

    PubMed  CAS  Google Scholar 

  • Tsibris, J.C., J. Segars, D. Coppola, S. Mane, G.D. Wilbanks, W.F. O’Brien et al. (2002). Insights from gene arrays on the development and growth regulation of uterine leiomyomata. Fertility and Sterility. 78, 114–121.

    PubMed  Google Scholar 

  • Vitadello, M., M. Matteoli, and L. Gorza (1990). Neurofilament proteins are co-expressed with desmin in heart conduction system myocytes. J. Cell Sci. 97, 11–21.

    PubMed  CAS  Google Scholar 

  • Vitadello, M., S. Vettore, E. Lamar, K.R. Chien, and L. Gorza (1996). Neurofilament M mRNA is expressed in conduction system myocytes of the developing and adult rabbit heart. J. Mol. Cell Cardiol. 28, 1833–44.

    PubMed  CAS  Google Scholar 

  • Villalobos, C., L. Nunez, and J. Garcia-Sancho (1996). Functional glutamate receptors in a subpopulation of anterior pituitary cell. FASEB J. 10, 654–660.

    PubMed  CAS  Google Scholar 

  • Watanabe, M., M. Mishina, and Y. Inoue (1994). Distinct gene expression of the N-methyl-D-aspartate receptor channel subunit in peripheral neurons of the mouse sensory ganglia and adrenal gland. Neurosci. Lett. 165, 183–186.

    PubMed  CAS  Google Scholar 

  • Watters, M.R. (1995). Organic neurotoxins in seafoods. Clin. Neurol. Neurosurg. 97, 119–124.

    PubMed  CAS  Google Scholar 

  • Weaver, C.D., T.L. Yao, A.C. Powers, and T.A. Verdoorn (1996). Differential expression of glutamate receptor subtypes in rat pancreatic islets. J. Biol. Chem. 271, 12977–12984.

    PubMed  CAS  Google Scholar 

  • Whittle, K. and S. Gallaher (2000). Marine Toxins. Br. Med. Bull. 56, 236–253.

    PubMed  CAS  Google Scholar 

  • Winter, C.R. and R.C. Baker (1996). L-Glutamate induced changes in intracellular calcium oscillation frequency through non-classical glutamate receptor binding in cultured rat myocardial cells. Life Sci. 57, 1925–1934.

    Google Scholar 

  • Wolosker, H., R. Panizzutti, and J. Miranda (2002). Neurobiology through the looking glass: D-Serine as a new glial neurotransmitter. Neurochem. Int. 41, 327–332.

    PubMed  CAS  Google Scholar 

  • Wolosker, H., S. Blackshaw, and S.H. Snyder (1999). Serine Racemase: A glial enzyme synthesizing D-Serine to regulate glutamate-N-methyl-D-asparatate neurotransmission. PNAS. 9, 13409–13414.

    Google Scholar 

  • Wu, Y.M., S.S. Kung, and W.C. Chow (1996). Determination of relative abundance of splicing variants of Oreochromis glutamate receptors by quantitative reverse-transcriptase PCR. FEBS Letters 390, 157–160.

    PubMed  CAS  Google Scholar 

  • Xue, J., G. Li, E. Bharucha and N.G. Cooper (2002). Developmentally regulated expression of CaMKII and iGluRs in the rat retina. Brain Res. Dev. Brain Res. 138, 61–70.

    PubMed  CAS  Google Scholar 

  • Yoneda, Y. and K. Ogita (1986). Localization of [3H-] glutamate binding sites in rat adrenal medulla. Brain Res. 38, 387–391.

    Google Scholar 

  • Zautcke, J.L., J.A. Schwartz, and E.J. Mueller (1986). Chinese restaurant syndrome: A Review. Ann. Emerg. Med. 15, 1210–1213.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Gill, S., Pulido, O. (2005). Glutamate Receptors in Peripheral Tissues: Distribution and Implications for Toxicology. In: Gill, S., Pulido, O. (eds) Glutamate Receptors in Peripheral Tissue: Excitatory Transmission Outside the CNS. Springer, Boston, MA. https://doi.org/10.1007/0-306-48644-X_1

Download citation

Publish with us

Policies and ethics