Skip to main content

Part of the book series: Bioelectric Engineering ((BEEG))

  • 285 Accesses

Conclusion

The rich properties of engineered carbon nanotubes will find themselves in wide range of biological and medicinal applications. Combining the natural biological molecular recognition process by natural proteins (ion channels, for example) with the properties of carbon nanotubes, an integrated new class of hybrid devices of carbon nanotubes and biological proteins will have versatile unprecedented selectivity, sensitivity, efficiency, and controllability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertil Hille. Ionic Channels of Excitable Membranes. Sinauer Associates Inc., Sunderland, Massachusetts, second edition, 1992.

    Google Scholar 

  2. Lawrence H. Pinto, L. J. Holsinger, and R. A. Lamb, Influenza virus protein has ion channel activity, Cell, 69, 517–528 (1992).

    Article  Google Scholar 

  3. D. Dawson, editor. Ion Channels and Genetic Diseases. Society of General Physiologists. Rockefeller University Press, New York, 1995.

    Google Scholar 

  4. S. W. Cowan, T. Schirmer, G. Rummel, M. Steiert, R. Ghosh, R. A. Pauptit, J. N. Jansonius, and J. Rosenbusch, Crystal structures explain two functional properties of two E. coli porins, Nature, 358, 727–733 (1992).

    Article  Google Scholar 

  5. Denis Jeanteur, Tilman Schirmer, Didier Fourel, Valerie Simonet, Gabriele Rummel, Christine Widmer, Jurg P. Rosenbusch, Franc Pattus, and Jean-Marie Pagès, Structural and functional alterations of a colicin-resistant mutant of OmpF porin from Escherichia coli, Proc. Natl. Acad. Sci. USA, 91, 10675–10679 (1994).

    Google Scholar 

  6. Roger Sayle. RasMol: Molecular Graphics Visualisation tool. Biomolecular Structures Group, Glaxo Wellcome Research & Development, Stevenage, Hertfordshire, UK, 1995.

    Google Scholar 

  7. R. Misra and S. A. Benson, Genetic identification of the pore domain of the OmpC porin of Escherichia coli K-12, J. Bacteriol., 170, 3611–3617 (1988).

    Google Scholar 

  8. G. Meissner, Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum, J. Biol. Chem., 261, 6300–6306 (1986).

    Google Scholar 

  9. J. Smith, T. Imagawa, J. Ma, M. Fill, K. Campbell, and R. Coronado, Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum, J. Gen. Physiol, 92, 1–26 (1988).

    Google Scholar 

  10. B. Jap and P. Walian, Biophysics of structure and function of porin, Quart. Rev. Biophys., 23, 367–403 (1990).

    Article  Google Scholar 

  11. H. Nikaido, Transport across the bacterial outer membrane, J. Bioenerg. Biomembr., 25, 581–589 (1993).

    Google Scholar 

  12. Jurg Rosenbusch. Porins In Phosphate in Microorganisms. Celluar and Molecular Biology, A. Torriani-Gorini, E. Yagil, and S. Silver, editors, pages 329–334. ASM Press, Washington, DC, 1994.

    Google Scholar 

  13. Xuanqing Jiang, Marvin A. Payne, Zhenghua Cao, Samuel B. Foster, Jimmy B. Feix, Salete M. C. Newton, and Phillip E. Klebba, Ligand-specific opening of a gated-porin channel in the outer membrane of living bacteria, Secience, 276, 1261–1264 (1997).

    Google Scholar 

  14. D. A. Doyle, J. M. Cabral, Richard A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, and R. MacKinnon, The structure of the potassium channel: Molecular basis of K + conduction and selectivity, Science, 280, 69–77 (1998).

    Article  Google Scholar 

  15. Bert Sakmann and Erwin Neher, editors. Single Channel Recording. Plenum Press, New York, 2nd edition, 1995.

    Google Scholar 

  16. Duan P. Chen, Le Xu, Ashutosh Tripathy, Gerhard Meissner, and Bob Eisenberg, Permeation through the calcium release channel of cardiac muscle, Biophys. J., 73, 1337–1354 (1997).

    Google Scholar 

  17. V. Barcilon, D. P. Chen, R. S. Eisenberg, and M. A. Ratner, Barrier crossing with concentration boundary conditions in biological channels and chemical reactions, J. Chem. Phys., 98, 1193–1212 (1993).

    Article  Google Scholar 

  18. Masakatsu Watanabe, J. Rosenbusch, T. Schirmer, and Martin Karplus, Computer simulations of the OmpF porin from the outer memebrane of Escherichia coli, Biophys. J., 72, 2094–2102 (1997).

    Google Scholar 

  19. S.-W. Chiu, S. Subramaniam, E. Jakobsson, and J. A. McCammon, Water and polypeptide conformations in the gramicidin channel: a molecular dynamics study, Biophys. J., 56, 253–261 (1989).

    Google Scholar 

  20. Johan Åqvist and Arieh Warshel, Energetics of ion permeation through membrane channels, solvation of Na+ by gramicidin A, Biophys. J., 56, 171–182 (1989).

    Google Scholar 

  21. Benoit Roux and Martin Karplus, Ion transport in a model gramicidin channel: structure and thermodynamics, Biophys. J., 59, 961–981 (1991).

    Article  Google Scholar 

  22. Wonpil Im and Benoit Roux, Ion and counterions in a biological channel: A molecular dynamics simulation of ompf porin from escherichia coli in an explicit membrane with 1m kcl aqueous salt solution, J. Mol. Biol., 319, 1177–1197 (2002).

    Article  Google Scholar 

  23. Wonpil Im and Benoit Roux, Ion permeation and selectivity of ompf porin: A theoretical study based on molecular dynamics, brownian dynamics and continuum electrodiffusion theory, J. Mol. Biol., 322, 851–869 (2002).

    Article  Google Scholar 

  24. Duan P. Chen, Le Xu, Ashutosh Tripathy, Gerhard Meissner, and Bob Eisenberg, Selectivity and permeation through the calcium release channel of cardiac muscle: Monovalent alkaline metal ions, Biophys. J., 76, 1346–1366 (1999).

    Google Scholar 

  25. Duan P. Chen, Le Xu, Bob Eisenberg, and Gerhard Meissner, Calcium ion permeation through the calcium release channel (ryanodine receptor) of cardiac muscle, J. Phys. Chem., 107, 9139–9145 (2003).

    Google Scholar 

  26. Z. Schuss, B. Nadler, and R. S. Eisenberg, Derivation of poisson and nernstplanck equations in a bath and channel from a molecular model, Phys. Rev. E, 64, 036116-1–036116-14 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Chen, D.P. (2004). Bridging Natural Nano-Tubes with Designed Nanotubes. In: Stroscio, M.A., Dutta, M. (eds) Biological Nanostructures and Applications of Nanostructures in Biology. Bioelectric Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-306-48628-8_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-48628-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48627-2

  • Online ISBN: 978-0-306-48628-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics