Skip to main content

Neural Cells Derived From Embryonic Stem Cells

  • Chapter
Neural Stem Cells
  • 263 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angelov DN, Arnhold S, Andressen C, Grabsch H, Puschmann M, Hescheler J, Addicks K (1998) Temporospatial relationships between macroglia and microglia during in vitro differentiation of murine stem cells. Dev Neurosci 20:42–51.

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) Genomewide RNAi analysis of Caenorhabditis elegnas fat regulatory genes. Nature 421:268–272.

    Article  CAS  PubMed  Google Scholar 

  • Avellana-Adalid V, Nait-Oumesmar B, Lachapelle F, Baron-Van Evercooren A (1996) Expansion of rat oligodendrocyte progenitors into proliferative “oligospheres” that retain differentiation potential. J Neurosci Res 45:558–570.

    Article  CAS  PubMed  Google Scholar 

  • Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342–357.

    Article  CAS  PubMed  Google Scholar 

  • Bain G, Yao M, Huettner JE, Finley MFA, Gottlieb DI (1998) Neuronlike cells derived in culture from P19 embryonal carcinoma and embryonic stem cells. In: Culturing nerve cells, 2nd Ed. (Gary Banker and Kimberly Goslin, eds.), pp 189–211. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Bernsteine EG, Hooper ML, Grandchamp S, Ephrussi B (1973) Alkaline phosphatase activity in mouse teratoma. Proc Natl Acad Sci USA 70:3899–3903.

    Google Scholar 

  • Billon N, Jolicoeur C, Ying QL, Smith A, and Raff M (2002) Normal timing of oligodendrocytes development from genetically engineered, lineage-selectable mouse ES cells. J Cell Sci 115:3657–3665.

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson’s rat model. Proc Natl Acad Sci USA 99:2344–2349.

    Article  CAS  PubMed  Google Scholar 

  • Bottenstein JE, Sato GH (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci USA 76: 514–517.

    CAS  PubMed  Google Scholar 

  • Brustle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RDG (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–756.

    CAS  PubMed  Google Scholar 

  • Brustle O, Spiro AC, Karram K, Choudhary K, Okabe S, McKay RD (1997) In vitro-generated neural precursors participate in mammalian brain development. Proc Natl Acad Sci USA 94:14809–14814.

    Article  CAS  PubMed  Google Scholar 

  • Buehr M, Nichols J, Stenhouse F, Mountford P, Greenhalgh CJ, Kantachuvesiri S, Brooker G, Mullins J, and Smith AG (2003) Rapid loss of oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines. Biol Reprod 68:222–229.

    CAS  PubMed  Google Scholar 

  • Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu C-P, Rao MS (2001) Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 172:383–397.

    Article  CAS  PubMed  Google Scholar 

  • Cervantes RB, Stringer JR, Shao C, Tischfield JA, Stambrook PJ (2002) Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc Natl Acad Sci USA 99:3586–3590.

    Article  CAS  PubMed  Google Scholar 

  • Chen LR, Shiue YL, Bertolini L, Medrano JF, BonDurant RH, Anderson GB (1999) Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 52:195–212.

    Article  CAS  PubMed  Google Scholar 

  • Cibelli JB, Grant KA, Chapman KB, Cunniff K, Worst T, Green HL, Walker SJ, Gutin PH, Vilner L, Tabar V, Dominko T, Kane J, Wettstein PJ, Lanza RP, Studer L, Vrana KE, West MD (2002) Parthenogenetic stem cells in nonhuman primates. Science 295:819.

    Article  CAS  PubMed  Google Scholar 

  • Darmon M, Bottenstein J, Sato G (1981) Neural differentiation following culture of embryonal carcinoma cells in a serum-free defined medium. Dev Biol 85: 463–473.

    Article  CAS  PubMed  Google Scholar 

  • Deacon T, Dinsmore J, Costantini L, Ratliff J, Isacson O (1998) Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Exp Neurol 149:28–41.

    Article  CAS  PubMed  Google Scholar 

  • DeWitt N (2002) Biologists divided over proposal to create human-mouse embryos. (News) Nature 420:255.

    CAS  PubMed  Google Scholar 

  • Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45.

    CAS  PubMed  Google Scholar 

  • Dunnett SB (1999) Repair of the damaged brain. The Alfred Meyer Memorial Lecture 1998. Neuopathol Appl Neurobiol 25:351–362.

    CAS  Google Scholar 

  • Evans MJ (1972) The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratoma cells. J Embryol Exp Morphol 28:163–176.

    CAS  PubMed  Google Scholar 

  • Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298:556–562.

    Article  CAS  PubMed  Google Scholar 

  • Finley MF, Kulkarni N, Huettner JE (1996) Synapse formation and establishment of neuronal polarity by P19 embryonic carcinoma cells and embryonic stem cells. J Neurosci 16:1056–1065.

    CAS  PubMed  Google Scholar 

  • Fraichard A, Chassande O, Bilbaut G, Dehay C, Savatier P, Samarut, J (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J Cell Sci 108:3181–3188.

    CAS  PubMed  Google Scholar 

  • Freed C (2002) Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients with Parkinson’s disease? Proc Natl Acad Sci USA 99:1755–1757.

    Article  CAS  PubMed  Google Scholar 

  • Ge W, Marinowich K, Wu X, He F, Miyamoto A, Fan G, Weinmaster G, Sun YE (2002) Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation. J Neurosci Res 69:848–860.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh C, Collodi P (1994) Culture of cells from zebrafish (Brachydanio rerio) blastula-stage embryos. Cytotechnology 14:21–26.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein RS, Drukker M, Reubinoff BE, Benvenisty N (2002) Integration and differentiation of human embryonic stem cells transplanted to the chick embryo. Dev Dyn 225:80–86.

    Article  CAS  PubMed  Google Scholar 

  • Gossler A, Joyner AL, Rossant J, Skarnes WC (1989) Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244:463–465.

    CAS  PubMed  Google Scholar 

  • Gottlieb DI (2002) Large-scale sources of neural stem cells. Annu Rev Neurosci 25:381–407.

    Article  CAS  PubMed  Google Scholar 

  • Gratsch TE, O’Shea KS (2002) Noggin and chordin have distinct activities in promoting lineage commitment of mouse embryonic stem (ES) cells. Dev Biol 245:83–94.

    Article  CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays neuralizing activity. Cell 77:283–295.

    CAS  PubMed  Google Scholar 

  • Hong Y, Winkler C, Schartl M (1996) Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech Dev 60:33–44.

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Winkler C, Schartl M (1998) Production of medakafish chimeras from a stable embryonic stem cell line. Proc Natl Acad Sci USA 95:3679–3694.

    Article  CAS  PubMed  Google Scholar 

  • Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, Chaillet JR (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmtl gene. Cell 104:829–838.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa S-I, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, Haruta M, Takahashi M, Yoshikawa K, Nishikawa S, Nakatsuji N, Sasai Y (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci USA 99:1580–1585.

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56.

    Article  CAS  PubMed  Google Scholar 

  • Kleinsmith LJ, Pierce GB (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res 24:1544–1552.

    CAS  PubMed  Google Scholar 

  • Laborsky PA, Barlow DP, Hogan BL (1994) Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) stem cell lines. Development 120:3197–3204.

    Google Scholar 

  • Lee S-H, Lumelsky N, Studer L, Auerbach JM, McKay RDG (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18:675–679.

    CAS  PubMed  Google Scholar 

  • Lindvall O, Hagell P (2000) Clinical observations after neural transplantation in Parkinson’s disease. Prog Brain Res 127:299–320.

    CAS  PubMed  Google Scholar 

  • Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA 97:6126–6131.

    CAS  PubMed  Google Scholar 

  • Maden M (2002) Retinoid signaling in the development of the central nervous system. Nat Rev Neurosci 3:843–853.

    Article  CAS  PubMed  Google Scholar 

  • Martin GR (1980) Teratocarcinomas and mammalian embryogenesis. Science 209:768–776.

    CAS  PubMed  Google Scholar 

  • Martin GR, Evans MJ (1975) The formation of embryoid bodies in vitro by homogeneous embryonal carcinoma cell cultures derived from isolated single cell. In: Teratomas and differentiation (Sherman MI and Solter D, eds.), pp.169–187. New York, NY: Academic Press.

    Google Scholar 

  • Matthias K, Kirchhoff F, Seifert G, Huttmann K, Matyash M, Kettenmann H, Steinhauser C (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23:1750–1758.

    CAS  PubMed  Google Scholar 

  • McDonald JW, Liu X-Z, Qu Y, Liu S, Turetsky D, Mickey SK, Gottlieb DI, Choi DW (1999) Transplanted embryonic stem cells survive, differentiate, and promote recovery in injured rat spinal cord. Nat Med 5:1410–1412.

    Article  CAS  PubMed  Google Scholar 

  • Morizane A, Takahashi J, Takagi Y, Sasai Y, Hashimoto N (2002) Optimal conditions for in vivo induction of dopaminergic neurons from embryonic stem cells through stromal cell-derived inducing activity. J Neurosci Res 69:934–939.

    Article  CAS  PubMed  Google Scholar 

  • Mortensen RM, Conner DA, Chao S, Geisterfer-Lowrance AA, Seidman JG (1992) Production of homozygous mutant ES cells with a single targeting construct. Mol Cell Biol 12:2391–2395.

    CAS  PubMed  Google Scholar 

  • Muncie MJ, Michalska AE, O’Brien CM, Trounson AO, Pera MF, Mountford PS (2000) Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 10:989–992.

    Google Scholar 

  • Munoz-Sanjuan I, Brivanlou AH (2002) Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3:271–280.

    CAS  PubMed  Google Scholar 

  • Ohtaka T, Matsui Y, Obinata M (1999) Hematopoietic development of primordial germ cell-derived mouse embryonic germ cells in culture. Biochem Biophysical Res Comm 260:475–482.

    CAS  Google Scholar 

  • Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59:89–102.

    Article  CAS  PubMed  Google Scholar 

  • Pain B, Clark ME, Shen M, Nakazawa H, Sakurai M, Samarut J, Etches RJ (1996) Long-term in vitro culture and characterisation of avian embryo stem cells with multiple morphogenetic potentialities. Development 122:2339–2348.

    CAS  PubMed  Google Scholar 

  • Perrier AL, Studer L (2003) Making and repairing the mammalian brain — in vitro production of dopaminergic neurons. Annu Rev Cell Dev Biol. In press.

    Google Scholar 

  • Rathjen J, Haines BP, Hudson KM, Nesci A, Dunn S, Rathjen PD (2002) Directed differentiation of pluripotent cells to neural lineages: homogeneous formation and differentiation of a neuroectoderm population. Development 129:2649–2661.

    CAS  PubMed  Google Scholar 

  • Renoncourt Y, Carroll P, Filippi P, Arce V, Alonso S (1998) Neurons derived from ES cells express homeoproteins characteristic of motoneurons an interneurons. Mech Dev 79:185–197.

    Article  CAS  PubMed  Google Scholar 

  • Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134–1140.

    Article  CAS  PubMed  Google Scholar 

  • Richards M, Fong CY, Chan WK, Wong PC, Bongso A (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20:933–936.

    Article  CAS  PubMed  Google Scholar 

  • Rideout 3rd WE, Hochedlinger K, Kyba M, Daley GQ, Jaenisch R (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109:17–27.

    Article  CAS  PubMed  Google Scholar 

  • Rohwedel J, Sehlmeyer U, Shan J, Meister A, Wobus A (1996) Primordial germ cell-derived mouse embryonic germ EG cells in vitro resemble undifferentiated stem cells with respect to differentiation capacity and cell cycle distribution. Cell Biol Int 20:579–587.

    Article  CAS  PubMed  Google Scholar 

  • Rutishauser U (1992) NCAM and its polysialic acid moiety: a mechanism for pull/push regulation of cell interactions during development? Dev Suppl 99–104.

    Google Scholar 

  • Saito S, Ugai H, Sawai K, Yamamoto Y, Minamihasi A, Kurosaka K, Kobayashi Y, Murata T, Obata Y, Yokoyama K (2002) Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. FEBS Lett 531:389–396.

    Article  CAS  PubMed  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790.

    Article  CAS  PubMed  Google Scholar 

  • Schuldiner M, Eiges R, Eden A, Yanuka O, Iskovitz-Eldor J, Goldstein RS, Benvenisty N (2001) Induced neuronal differentiation of human embryonic stem cells. Brain Res 913:201–205.

    Article  CAS  PubMed  Google Scholar 

  • Smith A (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462.

    Article  CAS  PubMed  Google Scholar 

  • Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70:829–840.

    CAS  PubMed  Google Scholar 

  • Solter D, Skreb N, Damjanov I (1970) Extrauterine growth of mouse egg cylinders results in malignant teratoma. Nature 227:503–504.

    Article  CAS  PubMed  Google Scholar 

  • Soodeen-Karamath S, Gibbins AM (2001) Apparent absence of oct 3/4 from the chicken genome. Mol Reprod Dev 58:137–148.

    Article  CAS  PubMed  Google Scholar 

  • Spemann H, Mangold H (1924) Uber Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Wilh Roux’ Arch Entw Mech Organ 100:599–638. English translation in: Foundations of experimental embryology (Willier BH, Oppenheimer JM, eds.), pp. 144–184. New York, NY: Hafner Press.

    Google Scholar 

  • Stern CD (2002) Induction and initial patterning of the nervous system — the chick embryo enters the scene. Curr Opin Genet Dev 12:447–451.

    Article  CAS  PubMed  Google Scholar 

  • Stevens LC (1970) The development of transplantable teratocarcinomas from intratesticular grafts of pre-and postimplantation mouse embryos. Dev Biol 21:364–382.

    Article  CAS  PubMed  Google Scholar 

  • Stevens LC, Hummel KP (1957) A description of spontaneous congenital testicular teratomas in strain 129 mice. J Natl Cancer Inst 18:719–747.

    CAS  PubMed  Google Scholar 

  • Stewart CL, Gadi I, Bhatt H (1994) Stem cells from primordial germ cells can reenter the germ line. Dev Biol 161:626–628.

    CAS  PubMed  Google Scholar 

  • Strubing C, Ahnert-Hilger G, Shan J, Wiedenmann B, Hescheler J, Wobus AM (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech Development 53:275–287.

    CAS  Google Scholar 

  • Studer L (2001) Stem cells with brainpower. Nat Biotechnol 19:105–109.

    Article  Google Scholar 

  • Suda Y, Suzuki M, Ikawa Y, Aizawa S (1987) Mouse embryonic stem cells exhibit indefinite proliferative potential. J Cell Physiol 133:197–201.

    Article  CAS  PubMed  Google Scholar 

  • Sukoyan MA, Yatolin SY, Golubitsa AN, Zhelezova AI, Semenova LA, Serov OL (1993) Embryonic stem cells derived from morulae, inner cell mass, and blastocysts of mink: comparisons of their pluripotencies. Mol Reprod Dev 36:148–158.

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Bradford CS, Ghosh C, Collodi P, Barnes DW (1995) ES-like cell cultures derived from early zebrafish embryos. Mol Mar Biotl Biotechnol 4:193–199.

    CAS  Google Scholar 

  • Surani MA (1998) Imprinting and the initiation of gene silencing in the germ line. Cell 93:309–312.

    Article  CAS  PubMed  Google Scholar 

  • Tada T, Tada M, Hilton K, Barton SC, Sado T, Takagi N, Surani MA (1998) Epigenotype switching of imprintable loci in embryonic germ cells. Dev Genes Evol 207:551–561.

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shappiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147.

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92:7844–7848.

    CAS  PubMed  Google Scholar 

  • Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30:65–78.

    Article  CAS  PubMed  Google Scholar 

  • Tsai M, Wedemeyer J, Ganiatsas S, Tarn S-Y, Zon LI, Galli SJ (2000) In vivo immunological function of mast cells derived from embryonic stem cells: an approach for the rapid analysis of even embryonic lethal mutations in adult mice in vivo. Proc Natl Acad Sci USA 97:9186–9190.

    CAS  PubMed  Google Scholar 

  • Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P (2001) Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292:740–743.

    Article  CAS  PubMed  Google Scholar 

  • Weiss MJ, Orkin SH (1996) In vitro differentiation of murine embryonic stem cells. J Clin Invest 97:591–595.

    CAS  PubMed  Google Scholar 

  • Westmoreland JJ, Hancock CR, Condie BG (2001) Neuronal development of embryonic stem cells: a model of GAB Aergic neuron differentiation. Biochem Biophy Res Commun 284:674–680.

    Article  CAS  Google Scholar 

  • Wichterle H, Lieberam I, Porter JA, Jessell TA (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397.

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813.

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974.

    CAS  PubMed  Google Scholar 

  • Yan J, Studer L, McKay RD (2001) Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. J Neurochem 76:307–311.

    CAS  PubMed  Google Scholar 

  • Ye W, Shimamura K, Rubenstein JL, Hynes MA, Rosenthal A. (1998) FGF and SHH signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93:755–766.

    Article  CAS  PubMed  Google Scholar 

  • Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21:183–186.

    Article  CAS  PubMed  Google Scholar 

  • Zambrowicz BP, Friedrich GA, Buxton EC, Lilleberg SL, Person C, Sands AT (1998) Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392:608–611.

    Article  CAS  PubMed  Google Scholar 

  • Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–250.

    CAS  PubMed  Google Scholar 

  • Zhang SC, Lundberg C, Lipsitz D, O’Connor LT, Duncan ID(1998) Generation of oligodendroglial progenitors from neural stem cells. J Neurocytol 27:475–489.

    Article  CAS  PubMed  Google Scholar 

  • Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129–1133.

    CAS  PubMed  Google Scholar 

  • Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21:319–321.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tomishima, M.J., Studer, L. (2003). Neural Cells Derived From Embryonic Stem Cells. In: Bottenstein, J.E. (eds) Neural Stem Cells. Springer, Boston, MA. https://doi.org/10.1007/0-306-48356-4_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48356-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7588-9

  • Online ISBN: 978-0-306-48356-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics