Skip to main content

Stomata Imprints: A New and Quick Method to Count Stomata and Epidermis Cells

  • Chapter
Handbook of Plant Ecophysiology Techniques

Abstract

Comparing several techniques for creating epidermal replicas, we found that imprints on cellulose-di-acetate and on polymethyl-metacrylate can be easily performed within a few seconds, which proves to be a considerable advantage especially in field trials. The result is a permanent impression of the epidermis’ surface, perfect for long-term storage. In the case of extremely sunken stomata, pleated leaf surfaces, or coniferous needles, we additionally used a cyanacrylate adhesive. Reliable and reproducible results could be achieved for use when analysing the imprints by a drawing microscope or an image analyses program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow P.W., Carr D.J., eds. Positional Controls in Plant Development. Cambridge: Cambridge University Press, 1984

    Google Scholar 

  • Bettarini I., Vaccari F.P., Miglietta F. Elevated CO 2 concentrations and stomatal density: observations from 17 plant species growing in a CO 2 spring in central Italy. Global Change Biol 1998; 4:17–22

    Article  Google Scholar 

  • Bolhàr-Nordenkampf H.R., Draxler G. “Functional Leaf Anatomy”. In Photosynthesis and Production in a Changing Environment. D.O. Hall, J.M.O. Scurlock, H.R. Bolhàr-Nordenkampf, R.C. Leegood, S.P. Long, eds. London: Chapman and Hall, 1993

    Google Scholar 

  • Bunce J.A. Stomatal conductance, photosynthesis and respiration of temperature deciduous tree seedlings grown outdoors at an elevated concentration of carbon dioxide. Plant Cell Environ 1992; 15:541–549

    CAS  Google Scholar 

  • Bunce J.A. Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field. Global Change Biol 1999; 6:371–382

    Google Scholar 

  • Bünning E. Die Entstehung von Mustern in der Entwicklung von Pflanzen. Encyclopedia of Plant Physiol 1965; 15:383–403

    Google Scholar 

  • Cousson A. Analysis of the sensing and transducting processes implicated in the stomatal responses to carbon dioxide in Commelina communis L. Plant Cell Environ 2000; 23:487–495

    Article  CAS  Google Scholar 

  • Esau K. Plant Anatomy. Ed 2, John Wiley and Sons, Inc., 1965

    Google Scholar 

  • Fahn A. Plant Anatomy. Ed 3, Pergamon Press, 1982

    Google Scholar 

  • Gay A.P., Hauck B. Acclimation of Lolium temulentum to enhanced carbon dioxide concentration. J Exp Bot 1994; 45:1133–1141

    Google Scholar 

  • Jarvis P.G., Mansfield T.A., Davies W.J. Stomatal behaviour, photosynthesis and transpiration under rising CO 2 . Plant Cell Environ 1999; 22:639–648

    CAS  Google Scholar 

  • Körner C Does global increase of CO 2 alter stomatal density? Flora 1988; 181:253–257

    Google Scholar 

  • Körner C., Neumayer M., Menendez-Riedl S., Smeets-Scheel A. Functional morphology of mountain plants. Flora 1989; 182:353–383

    Google Scholar 

  • Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C 3 plants: theoretical paper. Plant Cell Environ 1995; 18:339–355

    CAS  Google Scholar 

  • Mauseth J.D. Plant Anatomy. The Benjamin/Cummings Publishing Company, Inc., 1988

    Google Scholar 

  • Martin E.S., Donkin M.E., Stevens R.A. Stomata. London, UK: Edward Arnold Publishers Limited, 1983

    Google Scholar 

  • Metcalfe C.R., Chalk L. Anatomy of the Dicotyledons. Vol 1. Oxford: Oxford University Press, 1950

    Google Scholar 

  • Morison J.I.L. Plant growth and CO 2 history. Nature 1987; 327:560

    Article  Google Scholar 

  • Oren R., Sperry J.S., KatuI G.G., Pataki D.E., Ewers B.E., Phillips N., Schäfer K.V.R. Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ 1999; 22:1515–1526

    Article  Google Scholar 

  • Radoglou K.M., Jarvis P.G. Effects of CO 2 enrichment on four poplar clones. I. Growth and leaf anatomy. Ann Bot 1990; 65:617–626

    CAS  Google Scholar 

  • Radoglou K.M., Jarvis P.G. Effects of CO 2 enrichment and nutrient supply on growth, morphology and anatomy of Phaseolus vulgaris L. seedlings. Ann Bot 1992; 70:245–256

    CAS  Google Scholar 

  • Raschke K. Stomatal action. Annu Rev Plant Physiol 1975; 26:309–340

    Article  CAS  Google Scholar 

  • Salisbury E.J. Leaf form and function. Nature 1949; 163:515–518

    Google Scholar 

  • Thomas G.F., Harvey C.N. Leaf anatomy of four species grown under continuous CO 2 enrichment. Bot Gazette 1983; 144:303–309

    Google Scholar 

  • Ticha I., Obermajer P., Snopek J. Stomata density and sizes in in vitro grown tobacco plantlets. Physiol Plantarum 1997; 29:101–107

    Google Scholar 

  • Tognetti R., Longobucco A., Miglietta F., Raschi A. Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a Mediterranean carbon dioxide spring. Plant Cell Environ 1998; 21:613–622

    Article  Google Scholar 

  • Vazzana C., Puliga S., Bochicchio A., Raschi A. Study of the stomatal density in an alfalfa (Medicago sativa L.) ecotype. Rivista di Agronomia 1988; 22:127–132

    Google Scholar 

  • Willmer C.M. Stomata. Longman Group Limited, 1983

    Google Scholar 

  • Woodward F.I. Stomatal numbers are sensitive to increasing in CO 2 from preindustrial levels. Nature 1987; 327:617–618

    Article  Google Scholar 

  • Woodward F.I., Bazzaz F.A. The responses of stomatal density to CO 2 partial pressure. J Exp Bot 1988; 39:1771–1781

    Google Scholar 

  • Woodward F.I., Kelly C.K. The influence of CO 2 concentration on stomatal density. New Phytol 1995; 131:311–327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manuel J. Reigosa Roger

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Meister, M.H., Bolhàr Nordenkampf, H.R. (2001). Stomata Imprints: A New and Quick Method to Count Stomata and Epidermis Cells. In: Reigosa Roger, M.J. (eds) Handbook of Plant Ecophysiology Techniques. Springer, Dordrecht. https://doi.org/10.1007/0-306-48057-3_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-48057-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7053-6

  • Online ISBN: 978-0-306-48057-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics