Skip to main content

High resolution simulations of precipitation over the Alps with the perspective of coupling to hydrological models

  • Chapter
Climatic Change: Implications for the Hydrological Cycle and for Water Management

Part of the book series: Advances in Global Change Research ((AGLO,volume 10))

Abstract

As the computer resources increases, regional climate simulations can be investigated at finer horizontal resolutions in order to improve the representation of surface characteristics and mesoscale circulation. This paper aims at examining the relevance of precipitation fields simulated by highresolution regional climate models for hydrological purposes.

The MAR — Modèle Atmosphérique Régional — model was run at 20-km resolution for a four-month period over the Alps and the southeastern mountainous regions of France. The validation on the climatology of mean variables has not revealed visible drift or spurious trend. Precipitation generally reaches about 80% of the value obtained by the GPCC — Global Precipitation Climatology Center — climatology, and the spatial distribution of precipitation also compare favorably to observations. Significant sensitivity to the inclusion of cloud water fluxes at the lateral boundaries has been found for the spatial distribution of precipitation, more specifically in the representation of stratiform precipitation.

However the finest horizontal resolution used in RCM is about 20 km, which remains too coarse for the forcing of hydrological models, especially over mountainous regions. In order to improve the impact of the topographical forcing on microphysical processes, a rain disaggregation model has been applied to the precipitation simulated with MAR. Such a model has proven its usefulness for the representation of precipitation over watersheds, particularly for the situations characterized by heavy rainfall. Even if improvements are yet required, for instance considering interactive disaggregation, rain disaggregation models can be seen as a useful tool to interface hydrological and regional climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpert, P., and H. Shafir, 1989: Mesoγ-scale distribution of orographic precipitation: numerical study and comparison with precipitation derived from radar measurements. J. Appl. Meteor., 28, 1105–1117.

    Article  Google Scholar 

  • Anthes, R. A., Kuo, Y.-H., Hsie, E.-Y., Low-Nam, S., and T. W. Bettge, 1989 : Estimation of skill and uncertainty in regional numerical models. Quart. J. Roy. Meteor. Soc., 115, 763–806.

    Article  Google Scholar 

  • Atlas Climatique de France, 1989. Published by the “Ministère des Transports, Direction de la Météorologie”, Paris.

    Google Scholar 

  • Bader, M. J., and W. T. Roach, 1977: Orographic rainfall in warm sectors of depressions. Quart. J. Roy. Meteor. Soc., 103, 269–280.

    Article  Google Scholar 

  • Barros, A. P., and D. P. Lettenmaier, 1993: Dynamic modelling of the spatial distribution of precipitation in remote mountainous areas. Mon. Wea. Rev., 121, 1195–1214.

    Article  Google Scholar 

  • Barros, A. P., and D. P. Lettenmaier, 1994: Dynamic modeling of orographyically induced precipitation. Rev. of Geophys., 32, 265–284.

    Article  Google Scholar 

  • Beniston, M., and M. Rebetez, 1996: Regional behavior of minimum temperatures in Switzerland for the period 1979–1993. Theor. Appl. Climatology, 53, 231–243.

    Article  Google Scholar 

  • Beniston, M., Diaz, H. F., and R. S. Bradley, 1997: Climatic change at high elevation sites: An overview. Clim. Change, 36, 233–251.

    Article  Google Scholar 

  • Brasseur, O., Gallée, H., Schayes, G., Tricot, C., and K. De Ridder, 1998: Impact of Turbulent Closures on Diurnal Temperature Evolution for Clear Sky Situations over Belgium. Bound.-Layer Meteor., 87, 163–193.

    Article  Google Scholar 

  • Businger, J. A., 1973: Turbulent transfer in the atmospheric surface layer. Workshop on Micrometeorology, Amer. Meteorol. Soc., 67–100.

    Google Scholar 

  • Christensen, J. H., Machenhauer, B., Jones R. G., Schär C., Ruti P. M., Castro M., and G. Visconti, 1997: Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Climate Dynamics, 13, 489–506.

    Article  Google Scholar 

  • Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteorol. Soc., 102, 405–418.

    Google Scholar 

  • Davies, H. C., 1983: Limitations of some common lateral boundary schemes used in regional N WP models. Mon. Wea. Rev., 111, 1002–1012.

    Article  Google Scholar 

  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Research, 83, 1889–1903.

    Article  Google Scholar 

  • Dunn, L. B., 1991: Evaluation of vertical motion: Past, present, and future, Wea. Forecast., 6, 65–75.

    Article  Google Scholar 

  • Duynkerke, P. G., 1991: Radiation fog: a comparison of model simulation with detailed observations. Mon. Wea. Rev., 119, 324–341.

    Article  Google Scholar 

  • ECMWF, 2000: The IFS cycle CY21 r4 made operational in October 1999. ECMWF Newsletter Number 87, Spring 2000.

    Google Scholar 

  • Fouquart, Y., and B. Bonnel, 1980: Computations of solar heating of the Earth’s atmosphere: a new parameterization. Beitr. Phys. Atmos., 53, 35–62.

    Google Scholar 

  • Frei, C., and C. Schär, 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatology, 18, 873–900.

    Article  Google Scholar 

  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 1722–1733.

    Article  Google Scholar 

  • Gallée, H., 1995: Simulation of the mesocyclonic activity in the Ross Sea, Antarctica. Mon. Wea. Rev., 123, 2051–2069.

    Article  Google Scholar 

  • Gallée, H., 1996: Mesoscale atmospheric circulations over the Southwestern Ross Sea sector, Antarctica. J. Appt. Meteor., 35, 1142–1152.

    Article  Google Scholar 

  • Gallée, H., and G. Schayes, 1994: Development of a three-dimensional meso-y primitive equations model, katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon. Wea. Rev., 122, 671–685.

    Article  Google Scholar 

  • Giorgi, F., and M. R. Marinucci, 1996: An investigation of the sensitivity of simulated precipitation to model resolution and its implications for climate studies. Mon. Wea. Rev., 124, 148–166.

    Article  Google Scholar 

  • Giorgi, F., Hurrell, J. W., Marinucci, M. R., and M. Beniston, 1997: Elevation dependency of the surface climate change signal: A model study. J. Climate, 10, 288–296.

    Article  Google Scholar 

  • Giorgi, F., and L. O. Mearns, 1999: Regional climate modeling revisited. J Geophys. Res., 104, 6335–6352.

    Article  Google Scholar 

  • GPCC, 1992: The Global Precipitation Climatology Centre. Data available at the web site http://www.dwd.de/research/gpcc.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) — Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., and Maskell, K., 1996: Climate change 1995: The science of climate change. Cambridge University, Cambridge Press, UK, 572 pp.

    Google Scholar 

  • Marinucci, M. R., Giorgi, F., Beniston, M., Wild, M., Tschuck, P., Ohmura, A., and A. Bernasconi, 1995 High-resolution simulations of January and July climate over the Western Alpine region with a nested regional modeling system. Theor. Appl. Climatology, 51, 119–138.

    Article  Google Scholar 

  • Molinari, J., and Dudek, M., 1992: Parameterization of convective precipitation in mesoscale numerical models: a critical review. Mon. Wea. Rev., 120, 326–344.

    Article  Google Scholar 

  • Morcrette, J.-J., 1984: Sur la paramétrisation du rayonnement dans les modèles de la circulation générale atmosphérique. Unpublished thesis, Université de Lille, France.

    Google Scholar 

  • Leung, L. R., and S. J. Ghan, 1995: A subgrid parameterization of orographic precipitation. Theor. Appl. Climatol., 52, 95–118.

    Article  Google Scholar 

  • Rebetez, M., and M. Beniston, 1998: Changes in sunshine duration are correlated with changes in daily temperature range this century: An analysis of Swiss climatological data. Geophys. Res. Letters, 25, 3611–3613.

    Article  Google Scholar 

  • Robichaud, A. J., and G. L. Austin, 1988: On the modelling of warm orographic rain by seeder-feeder mechanism. Quart. J. Roy. Meteor. Soc., 114, 967–988.

    Article  Google Scholar 

  • Sevruk, B., 1975: Inaccuracy in precipitation measurements. A serious problem in water resources instrumentation. Proc. Second World Congress, International Water Resources Association, vol. III, New Delhi, 429–440.

    Google Scholar 

  • Sevruk, B., 1989: Reliability of precipitation gradient estimates. Proc. XIV Int. Conf. Carpathian Meteorology, Swiss Climatic Data Center, Sofia, Bulgaria, 402–408.

    Google Scholar 

  • Sinclair, M. R., 1994: A diagnostic model for estimating orographic precipitation. J. Appl. Meteorol., 33, 1163–1175.

    Article  Google Scholar 

  • Therry, G., and P. Lacarrère, 1982: Improving the eddy kinetic energy model for the planetary boundary-layer description. Bound.-Layer Meteor., 25, 63–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brasseur, O., Gallée, H., Creutin, JD., Lebel, T., Marbaix, P. (2002). High resolution simulations of precipitation over the Alps with the perspective of coupling to hydrological models. In: Beniston, M. (eds) Climatic Change: Implications for the Hydrological Cycle and for Water Management. Advances in Global Change Research, vol 10. Springer, Dordrecht. https://doi.org/10.1007/0-306-47983-4_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-47983-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5944-4

  • Online ISBN: 978-0-306-47983-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics