Skip to main content

Inhibition of Invasion and Metastasis During Specific Amino Acid Restriction Associated with Metastasis Suppressor and Other Gene Changes

  • Chapter
Cancer Metastasis — Related Genes

Part of the book series: Cancer Metastasis — Biology and Treatment ((CMBT,volume 3))

Abstract

Dietary tyrosine (Tyr) and phenylalanine (Phe) restriction dramatically decreases metastasis of a number of implanted murine tumors including melanoma, hepatocarcinoma, lung carcinoma, and leukemia without inducing host toxicity. Herein, we show that Tyr/Phe deprivation in vitro rapidly decreases the intracellularfree Tyr concentration in A375 melanoma cells. The decreased availability of Tyr and Phe to melanoma, prostate, and breast cancer cells in vitro significantly inhibits their invasive ability. MKK4/SEK1 protein expression and/orphosphorylation increased in A375 melanoma and MDA-MB-231 breast cancer cells suggesting an important role for this metastasis suppressor gene in control of invasion during Tyr/Phe deprivation. Additionally, 14 other genes are differentially modulated by Tyr/Phe deprivation. These results suggest that specific intracellular free amino acids regulate the metastatic potential of tumor cells by modulating gene expression and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elstad, C. A. and Meadows, G. G. Modulation of B16-BL6 murine melanoma metastatic phenotype by tyrosine and phenylalanine restriction in the absence of host selection pressures. Anticancer Res, 13: 523–528, 1993.

    PubMed  CAS  Google Scholar 

  2. Fu, Y.-M., Yu, Z.-X., Ferrans, V. J., and Meadows, G. G. Tyrosine and phenylalanine restriction induces G0/G1 cell cycle arrest in murine melanoma in vitro and in vivo. Nutr Cancer, 29: 104–113, 1997.

    PubMed  CAS  Google Scholar 

  3. Shay, N. F., Nick, H. S., and Kilberg, M. S. Molecular cloning of an amino acid-regulated mRNA (amino acid starvation-induced) in rat hepatoma cells. J Biol Chem, 265: 17844–18748, 1990.

    PubMed  CAS  Google Scholar 

  4. Marten, N. W., Burke, E. J., Hayden, J. M., and Straus, D. S. Effect of amino acid limitation on the expression of 19 genes in rat hepatoma cells. FASEB J, 8: 538–544, 1994.

    PubMed  CAS  Google Scholar 

  5. Pine, M. J. Improved host defense against L1210 leukemia by deprivation of dietary phenylalanine. Nutr Cancer, 3: 94–102, 1981.

    PubMed  CAS  Google Scholar 

  6. Abdallah, R. M., Starkey, J. R., and Meadows, G. G. Dietary restriction of tyrosine and phenylalanine: inhibition of metastasis of three rodent tumors. J Natl Cancer Inst, 78: 759–766, 1987.

    PubMed  CAS  Google Scholar 

  7. Elstad, C. A., Meadows, G. G., and Abdallah, R. M. Specificity of the suppression of metastatic phenotype by tyrosine and phenylalanine restriction. Clin Exp Met, 8: 393–416, 1990.

    Article  CAS  Google Scholar 

  8. Meadows, G. G. and Oeser, D. E. Response of B16 melanoma-bearing mice to varying dietary levels of phenylalanine and tyrosine. Nutr Rep Int, 28: 1073–1082, 1983.

    CAS  Google Scholar 

  9. Meadows, G. G., DiGiovanni, J., Minor, L., and Elmer, G. W. Some biological properties and an in vivo evaluation of tyrosine phenol-lyase on growth of B-16 melanoma. Cancer Res, 36: 167–171, 1976.

    PubMed  CAS  Google Scholar 

  10. Meadows, G. G., Pierson, H. F., Abdallah, R. M., and Desai, P. R. Dietary influence of tyrosine and phenylalanine on the response of B16 melanoma to carbidopa-levodopa methyl ester chemotherapy. Cancer Res, 42: 3056–3063, 1982.

    PubMed  CAS  Google Scholar 

  11. Pierson, H. F. and Meadows, G. G. Sodium ascorbate enhancement of carbidopa-levodopa methyl ester antitumor activity against pigmented B16 melanoma. Cancer Res, 43:2047–2051, 1983.

    PubMed  CAS  Google Scholar 

  12. Meadows, G. G., Abdallah, R. M., and Starkey, J. R. Interaction between specific dietary factors and experimental chemotherapy of metastatic melanoma. Cancer Chemother Pharmacol, 16:229–236, 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Elstad, C. A., Thrall, B. D., and Meadows, G. G. Tyrosine and phenylalanine restriction sensitizes adriamycin-resistant P388 leukemia cells to adriamycin. Nutr Cancer, 25: 47–60, 1996.

    Article  PubMed  CAS  Google Scholar 

  14. Fu, Y.-M., Li, Y.-Q., and Meadows, G. G. Influences of tyrosine and phenylalanine limitation on cytotoxicity of chimeric TGF-α on B16BL6 murine melanoma in vitro. Nutr Cancer, 31: 1–7, 1998.

    PubMed  CAS  Google Scholar 

  15. Elstad, C. A. and Meadows, G. G. Phenotypic stability of B16-BL6 melanoma exposed to low levels of tyrosine and phenylalanine. Anticancer Res, 10: 1313–1318, 1990.

    PubMed  CAS  Google Scholar 

  16. Uhlenkott, C. E., Huijzer, J. C., Cardeiro, D. J., Elstad, C. A., and Meadows, G. G. Attachment, invasion, chemotaxis, and proteinase expression of B16-BL6 melanoma cells exhibiting a low metastatic phenotype after exposure to dietary restriction of tyrosine and phenylalanine. Clin Expl Met, 14: 125–137, 1996.

    CAS  Google Scholar 

  17. Pelayo, B. A., Fu, Y.-M., and Meadows, G. G. Inhibition of B16BL6 melanoma invasion by tyrosine and phenylalanine deprivation is associated with decreased secretion of plasminogen activators and increased plasminogen inhibitors. Clin Expl Met, 17: 841–848, 1999.

    CAS  Google Scholar 

  18. Jones, B. N., Paabo, S., and Stein, S. Amino acid analysis and enzymatic sequence determination of peptides by an improved o-phthaldialdehyde precolumn labeling procedure. J Liquid Chromatogr, 4: 565–586, 1981.

    CAS  Google Scholar 

  19. Poirson-Bichat, F., Gonfalone, G., Bras-Gonçalves, R. A., Dutrillaux, B., and Poupon, M. F. Growth of methionine-dependent human prostate cancer (PC-3) is inhibited by ethionine combined with methionine starvation. Br J Cancer, 75: 1605–1612, 1997.

    PubMed  CAS  Google Scholar 

  20. Yoshida, B. A., Sokoloff, M. M., Welch, D. R., and Rinker-Schaeffer, C. W. Metastasis-suppressor genes: a review and perspective on an emerging field. J Natl Cancer Inst, 92: 1717–30, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. Huijzer, J. C., McFarland, M., Niles, R. M., and Meadows, G. G. Phorbol 12-myristate 13-acetate enhances nm23 gene expression in murine melanocytes but not in syngeneic B16-BL6 melanoma variants. J Cell Phys, 166: 487–494, 1996.

    Article  CAS  Google Scholar 

  22. Sánchez, L, Hughes, R. T., Mayer, B. J., Yee, K., Woodgett, J. R., Avruch, J., Kyriakis, J. M., and Zon, L. I. Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature, 372: 794–800, 1994.

    PubMed  Google Scholar 

  23. Dérijard, B., Raingeaud, J., Barrett, T., Wu, I.-H., Han, J., Ulevitch, R. J., and Davis, R. J. Independent human MAP kinase signal transduction pathways defined by MEK and MKK isoforms. Science, 267: 682–685, 1995.

    PubMed  Google Scholar 

  24. Yan, M., Dai, T. D. J. C., Kyriakis, J. M., Zon, L. I., Woodgett, J. R., and Templeton, D. J. Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature, 372: 798–800. 1994.

    PubMed  CAS  Google Scholar 

  25. Dérijard, B., Hibi, M., Wu, I.-H., Barrett, T., Su, B., Deng, T., Karin, M., and Davis, R. J. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell, 76: 1025–1037, 1994.

    PubMed  Google Scholar 

  26. Yang, D., Tournier, C., Wysk, M., Lu, H.-T., Xu, J., Davis, R. J., and Flavell, R. A. Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity. Proc. Natl. Acad. Sci. USA, 94: 3004–3009, 1997.

    PubMed  CAS  Google Scholar 

  27. Dear, T. N. and Kefford, R. F. Molecular oncogenetics of metastasis. Mol Aspects Med, 11:243–324, 1990.

    PubMed  CAS  Google Scholar 

  28. Teng, D. H.-F., Perry III, W. L., Hogan, J. K., Baumgard, M., Bell, R., Berry, S., Davis, T., Frank, D., Frye, C., Hattier, T., Hu, R., Jammulapati, S., Janecki, T., Leavitt, A., Mitchell, J. T., Pero, R., Sexton, D., Schroeder, M., Su, P.-H., Swedlund, B., Kyriakis, J. M., Avruch, J., Bartel, P., Wong, A. K. C., Oliphant, A., Thomas, A., Skolnick, M. H., and Tavtigian, S. V. Human mitogen-activated protein kinase kinase 4 as a candidate tumor suppressor. Cancer Res, 57: 4177–4182, 1997.

    PubMed  CAS  Google Scholar 

  29. Su, G. H., Hilgers, W., Shekher, M. C., Tang, D. J., Yeo, C. J., Hruban, R. H., and Kern, S. E. Alterations in pancreatic, biliary, and breast carcinomas support MKK4 as a genetically targeted tumor suppressor gene. Cancer Res, 58; 2339–2342, 1998.

    PubMed  CAS  Google Scholar 

  30. Chekmareva, M. A., Kadkhodaian, M. M., Hollowell, C. M. P., Kim, H., Yoshida, B. A., Luu, H. H., Stadler, W. M., and Rinker-Schaeffer, C. W. Chromosome 17-mediated dormancy of AT6.1 prostate cancer micrometastases. Cancer Res, 58: 4963–4969, 1998.

    PubMed  CAS  Google Scholar 

  31. Yoshida, B. A., Dubauskas, Z., Chekmareva, M. A., Christiano, T. R., Stadler, W. M., and Rinker-Schaeffer, C. W. Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Res, 59: 5483–5487, 1999.

    PubMed  CAS  Google Scholar 

  32. Brambilla, E., Constantin, B., Drabkin, H., and Roche, J. Semaphorin SEMA3F localization in malignant human lung and cell lines: A suggested role in cell adhesion and cell migration. Am J Pathol, 156: 939–950, 2000.

    PubMed  CAS  Google Scholar 

  33. Martin-Satue, M. and Blanco, J. Identification of semaphorin E gene expression in metastatic human lung adenocarcinoma cells by mRNA differential display. J Surg Oncol, 72: 18–23, 1999.

    PubMed  CAS  Google Scholar 

  34. Vikis, H. G., Li, W., He, Z., and Guan, K.-L. The semaphorin receptor plexin-Bl specifically interacts with active Rac in a ligand-dependent manner. Proc Natl Acad Sci USA, 97: 12457–12462, 2000.

    Article  PubMed  CAS  Google Scholar 

  35. Chu, X., Thompson, D., Yee, L. J., and Sung, L. A. Genomic organization of mouse and human erythrocyte tropomodulin genes encoding the pointed end capping protein for the actin filaments. Gene, 256: 271–281, 2000.

    Article  PubMed  CAS  Google Scholar 

  36. Cooper, J. A. and Schafer, D. A. Control of actin assembly and disassembly at filament ends. Curr Opin Cell Biol, 12: 97–103, 2000.

    Article  PubMed  CAS  Google Scholar 

  37. Kordula, T., Bugno, M., Rydel, R. E., and Travis, J. Mechanism of interleukin-1 and tumor necrosis factor α-dependent regulation of the α1-antiehymostrypsin gene in human astrocytes. J Neurosci, 20: 7510–7516, 2000.

    PubMed  CAS  Google Scholar 

  38. Hwang, S. R., Steineckert, B., Kohn, A., Palkovits, M., and Hook, V. Y. Molecular studies define the primary structure of α-antichymotrypsin (ACT) protease inhibitor in Alzheimer’s disease brains. Comparison of ACT in hippocampus and liver. J Biol Chem, 274: 1821–1827, 1999.

    PubMed  CAS  Google Scholar 

  39. Ikari, Y., Mulvihill, E., and Schwartz, S. M. Alpha 1-Proteinase inhibitor, alpha 1-antichymotrypsin and alpha 2-marcoglobulin are the anti-apoptotic factors of vascular smooth muscle cells. J Biol Chem, in press: 2001.

    Google Scholar 

  40. Wick, M., Burger, C., Funk, M., and Muller, R. Identification of a novel mitogeninducible gene (mig-6):regulation during Gl progression and differentiation. Exp Cell Res, 219:527–535, 1995.

    Article  PubMed  CAS  Google Scholar 

  41. Makkinje, A., Quinn, D. A., Chen, A., Cadilla, C. L., Force, T., Bonventre, J. V., and Kyriakis, J. M. Gene 33/Mig-6, a transcriptionally inducible adapter protein that binds GTP-Cdc42 and activates SAPK/JNK. A potential marker transcript for chronic pathologic conditions, such as diabetic nephropathy. Possible role in the response to persistent stress. J Biol Chem, 275: 17838–17847, 2000.

    Article  PubMed  CAS  Google Scholar 

  42. Matunis, M. J., Michael, W. M., and Dreyfuss, G. Characterization and primary structure of the poly(C)-binding heterogeneous nuclear ribonucleoprotein complex K protein. Mol Cell Biol, 12: 164–171, 1992.

    PubMed  CAS  Google Scholar 

  43. Tomonaga, T. and Levens, D. Heterogeneous nuclear ribonucleoprotein K is a DNA-binding transactivator. J Biol Chem, 270: 4875–4881, 1995.

    Article  PubMed  CAS  Google Scholar 

  44. Miau, L.-H., Chang, C.-J., Shen, B.-J., Tsai, W.-H., and Lee, S.-C. Identification of heterogeneous nuclear ribonucleoprotein K (hnRNP K) as a represser of C/EBPß-mediated gene activation. J Biol Chem, 273: 10784–10791, 1998.

    Article  PubMed  CAS  Google Scholar 

  45. Rabbitts, T. H., Forster, A., Larson, R., and Nathan, P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet, 4: 175–180, 1993.

    Article  PubMed  CAS  Google Scholar 

  46. Perez-Losada, J., Pintado, B., Gutierrez-Adan, A., Flores, T., Banares-Gonzalez, B., del Campo, J. C., Martin-Martin, J. F., Battaner, E., and Sanchez-Garcia, I. The chimeric FUS/TLS-CHOP fusion protein specifically induces liposarcomas in transgenic mice. Oncogene, 19: 2413–2422, 2000.

    PubMed  CAS  Google Scholar 

  47. Fu, Y.-M., Yu, Z.-X., Pelayo, B. A., Ferrans, V. J., and Meadows, G. G. Focal adhesion kinase-dependent apoptosis of melanoma induced by tyrosine and phenylalanine deficiency. Cancer Res, 59: 758–765, 1999.

    PubMed  CAS  Google Scholar 

  48. Jousse, C., Bruhat, A., Ferrara, M., and Fafournoux, P. Evidence for multiple signaling pathways in the regulation of gene expression by amino acids in human cell lines. J Nutr, 130: 1555–1560, 2000.

    PubMed  CAS  Google Scholar 

  49. Bruhat, A., Jousse C., Carraro, V., Reimold, A. M., Ferrara, M., and Fafournoux, P. Amino acids control mammalian gene transcription: activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter. Mol Cell Biol, 20:7192–7204, 2000.

    Article  PubMed  CAS  Google Scholar 

  50. Fafounoux, P., Bruhat, A., and Jousse C. Amino acid regulation of gene expression. Biochem J, 351: 1–12, 2000.

    Google Scholar 

  51. Varga, J., Li, L., Mauviel, A., Jeffrey, J., and Jimenez, S. A. L-tryptophan in supraphysiologic concentrations stimulates collagenase gene expression in human skin fibroblasts. Lab Invest, 70: 183–191, 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Meadows, G.G., Ge, X., Zhang, H., Oros, D.R., Fu, YM. (2002). Inhibition of Invasion and Metastasis During Specific Amino Acid Restriction Associated with Metastasis Suppressor and Other Gene Changes. In: Welch, D.R. (eds) Cancer Metastasis — Related Genes. Cancer Metastasis — Biology and Treatment, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-47821-8_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-47821-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0522-0

  • Online ISBN: 978-0-306-47821-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics