Skip to main content

The Molecular Virology of HIV-1

  • Chapter
AIDS in Africa

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunter E, Casey J, Hahn B, et al. Family Retroviridae. Virus Taxonomy-Seventh Periodical of the International Committee on Taxonomy of Viruses, 2001:369–387.

    Google Scholar 

  2. Rey-Cuille MA, Berthier JL, Bomsel-Demontoy MC, et al. Simian immunodeficiency virus replicates to high levels in sooty mangabeys without inducing disease. J Virol, 1998;72(5):3872–3886.

    PubMed  CAS  Google Scholar 

  3. Coffin JM. Retroviridae: The viruses and their replication. In: Fields BN, Knipe DM, Howley PM, et al., eds. Fields Virology. Philadelphia, New York: Lippincott-Raven Publishers, 1996:1767–1847.

    Google Scholar 

  4. Nathanson N, Hirsch VM, Mathieson BJ. The role of nonhuman primates in the development of an AIDS vaccine. AIDS, 1999;13(Suppl A):S113–S120.

    PubMed  Google Scholar 

  5. Goldstein S, Ourmanov I, Brown CR, et al. Wide range of viral load in healthy African green monkeys naturally infected with simian immunodeficiency virus. J Virol, 2000;74(24):11744–11753.

    Article  PubMed  CAS  Google Scholar 

  6. Beer BE, Bailes E, Sharp P, et al. A compilation and analysis of nucleic acid and amino acid sequences. In: Kuiken CL, Foley B, Hahn B, et al., eds. Diversity and Evolution of Primate Lentiviruses. Los Alamos, NM: Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, 1999:460–474.

    Google Scholar 

  7. Peeters M, Sharp PM. Genetic diversity of HIV-1: the moving target, AIDS, 2000;14(Suppl3):S129–S1240.

    PubMed  CAS  Google Scholar 

  8. Courgnaud V, Pourrut X, Bibollet-Ruche F, et al. Characterization of a novel simian immunodeficiency virus from guereza colobus monkeys (Colobus guereza) in Cameroon: a new lineage in the nonhuman primate lentivirus family. J Virol, 2001;75(2):857–866.

    Article  PubMed  CAS  Google Scholar 

  9. Chen Z, Telfier P, Gettie A, et al. Genetic characterization of new West African simian immunodeficiency virus SIVsm: geographic clustering of household-derived SIV strains with human immunodeficiency virus type 2 subtypes and genetically diverse viruses from a single feral sooty mangabey troop. J Virol, 1996;70(6):3617–3627.

    PubMed  CAS  Google Scholar 

  10. Chen Z, Luckay A, Sodora DL, et al. Human immunodeficiency virus type 2 (HIV-2) seroprevalence and characterization of a distinct HIV-2 genetic subtype from the natural range of simian immunodeficiency virus-infected sooty mangabeys. J Virol, 1997;71(5):3953–3960.

    PubMed  CAS  Google Scholar 

  11. Khabbaz RF, Heneine W, George JR, et al. Brief report: infection of a laboratory worker with simian immunodeficiency virus [see comments]. N Engl J Med, 1994;330(3):172–177.

    Article  PubMed  CAS  Google Scholar 

  12. Gao F, Yue L, White AT, et al. Human infection by genetically diverse SIVSM-related HIV-2 in West Africa. Nature, 1992;358(6386):495–499.

    Article  PubMed  CAS  Google Scholar 

  13. Sharp PM, Robertson DL, Hahn BH. Cross-species transmission and recombination of ‘AIDS’ viruses. Philos Trans R Soc Lond B Biol Sci, 1995;349(1327):41–47.

    PubMed  CAS  Google Scholar 

  14. Simon F, Mauclere P, Roques P, et al. Identification of a new human immunodeficiency virus type 1 distinct from group M and group O. Nat Med, 1998;9:1032–1037.

    CAS  Google Scholar 

  15. Zhu T, Korber BT, Nahmias AJ, et al. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic [see comments]. Nature, 1998;391(6667):594–597.

    PubMed  CAS  Google Scholar 

  16. Korber B, Theiler J, Wolinsky S. Limitations of a molecular clock applied to considerations of the origin of HIV-1. Science, 1998;280(5371): 1868–1871.

    Article  PubMed  CAS  Google Scholar 

  17. Robertson DL, Anderson JP, Bradac JA, et al. HIV-1 nomenclature proposal [letter]. Science, 2000;288(5463):55–56.

    Article  PubMed  CAS  Google Scholar 

  18. Vidal N, Peeters M, Mulanga-Kabeya C, et al. Unprecedented degree of human immunodeficiency virus type 1 (HIV-1) group M genetic diversity in the Democratic Republic of Congo suggests that the HIV-1 pandemic originated in Central Africa. J Virol, 2000;74(22): 10498–10507.

    Article  PubMed  CAS  Google Scholar 

  19. Gao F, Bailes E, Robertson DL, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes [see comments]. Nature, 1999;397(6718):436–441.

    Article  PubMed  CAS  Google Scholar 

  20. Huet T, Cheynier R, Meyerhans A, et al. Genetic organization of a chimpanzee lentivirus related to HIV-1 [see comments]. Nature, 1990;345(6273):356–359.

    Article  PubMed  CAS  Google Scholar 

  21. Vanden Haesevelde MM, Peeters M, Jannes G, et al. Sequence analysis of a highly divergent HIV-1-related lentivirus isolated from a wild captured chimpanzee. Virology, 1996;221(2):346–350.

    Google Scholar 

  22. Dickson D. Tests fail to support claims for origin of AIDS in polio vaccine [news]. Nature, 2000;407(6801): 117.

    Article  PubMed  CAS  Google Scholar 

  23. Roy AL, Malik S, Meisterernst M, et al. An alternative pathway for transcription initiation involving TFII-I. Nature, 1993;365(6444):355–359.

    PubMed  CAS  Google Scholar 

  24. Smale ST, Baltimore D. The Initiator as a transcription control element. Cell, 1989;57:103–113.

    Article  PubMed  CAS  Google Scholar 

  25. Montano MA, Kripke K, Norina CD, et al. NF-kappa B homodimer binding within the HIV-1 initiator region and interactions with TFII-I. Proc Natl Acad Sci USA, 1996;93:12376–12381.

    Article  PubMed  CAS  Google Scholar 

  26. Buratowski S. The Basics of Basal Transcription by RNA Polymerase II. Cell, 1994;77:5–8.

    Article  Google Scholar 

  27. Nabel G, Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells [published erratum appears in Nature 1990 Mar 8;344(6262):178]. Nature, 1987;326(6114):711–713.

    Article  PubMed  CAS  Google Scholar 

  28. Lenardo MJ, Baltimore D. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell, 1989;58:227–229.

    Article  PubMed  CAS  Google Scholar 

  29. Baeuerle PA, Baltimore D. IkB: A specific inhibitor of the NF-κB transcription factor. Science, 1988;242:540–546.

    PubMed  CAS  Google Scholar 

  30. Montano MA, Novitsky VA, Blackard JT, et al. Divergent transcriptional regulation among expanding human immunodeficiency virus type 1 subtypes. J Virol, 1997;71(11):8657–8665.

    PubMed  CAS  Google Scholar 

  31. Salminen MO, Johansson B, Sonnerborg A, et al. Full-length sequence of an ethiopian human immunodeficiency type 1 (HIV-1) isolate of genetic subtype C. AIDS Res Hum Retrovirus, 1996;12:1329–1339.

    Article  CAS  Google Scholar 

  32. Gao F, Robertson DL, Morrison SG, et al. The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin. J Virol, 1996; 70:7013–7029.

    PubMed  CAS  Google Scholar 

  33. Montano M, Nixon C, Essex M. Dysregulation through the NF-kB enhancer and TATA box of the HIV-1 subtype E promoter. J Virol, 1998;72(10):8446–8452.

    PubMed  CAS  Google Scholar 

  34. Duh EJ, Maury WJ, Folks TM, et al. Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kappa B sites in the long terminal repeat. Proc Natl Acad Sci USA, 1989;86(15):5974–5978.

    PubMed  CAS  Google Scholar 

  35. Osborn L, Kunkel S, Nabel G. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc. Natl. Acad. Sci. USA, 1989;86:2336–2340.

    PubMed  CAS  Google Scholar 

  36. Montano MA, Nixon CP, Ndung’u T, et al. Elevated tumor necrosis factor-alpha activation of human immunodeficiency virus type 1 subtype C in southern Africa is associated with an NF-kappa B enhancer gain-of-function. J Infect Dis, 2000;181(1):76–81.

    Article  PubMed  CAS  Google Scholar 

  37. Antoni B, Rabson A, Kinter A, et al. NF-kappa Bdependent and-independent pathways of HIV activation in a chronically infected T cell line. Virology, 1994;202(2):684–694.

    Article  PubMed  CAS  Google Scholar 

  38. Cullen BR, Greene WC. Regulatory pathways governing HIV-1 replication. Cell, 1989;58(3):423–426.

    Article  PubMed  CAS  Google Scholar 

  39. Feinberg MB, Baltimore D, Frankel AD. The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc Natl Acad Sci USA, 1991;88(9):4045–4049.

    PubMed  CAS  Google Scholar 

  40. Arya SK, Guo C, Josephs SF, et al. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science, 1985;229:69–73.

    PubMed  CAS  Google Scholar 

  41. Sodroski J, Rosen C, Wong-Staal F, et al. Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science, 1985;227:171–173.

    PubMed  CAS  Google Scholar 

  42. Dayton AI, Sodroski JG, Rosen CA, et al. The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell, 1986;44(6):941–947.

    Article  PubMed  CAS  Google Scholar 

  43. Fisher AG, Feinberg MB, Josephs SF, et al. The trans-activator gene of HTLV-III is essential for virus replication. Nature, 1986;320(6060):367–371.

    Article  PubMed  CAS  Google Scholar 

  44. Ensoli B, Buonaguro L, Barillari G, et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol, 1993;67(1):277–287.

    PubMed  CAS  Google Scholar 

  45. Borgatti P, Zauli G, Cantley LC, et al. Extracellular HIV-1 Tat protein induces a rapid and selective activation of protein kinase C (PKC)-alpha, and-epsilon and-zeta isoforms in PC12 cells. Biochem Biophys Res Commun, 1998;242(2):332–337.

    Article  PubMed  CAS  Google Scholar 

  46. Zauli G, Previati M, Caramelli E, et al. Exogenous human immunodeficiency virus type-1 Tat protein selectively stimulates a phosphatidylinositol-specific phospholipase C nuclear pathway in the Jurkat T cell line. Eur J Immunol, 1995;25(9):2695–2700.

    PubMed  CAS  Google Scholar 

  47. Gibellini D, Caputo A, Capitani S, et al. Upregulation of c-Fos in activated T lymphoid and monocytic cells by human immunodeficiency virus-1 Tat protein. Blood, 1997;89(5): 1654–1664.

    PubMed  CAS  Google Scholar 

  48. Kumar A, Manna SK, Dhawan S, et al. HIV-Tat protein activates c-Jun N-terminal kinase and activator protein-1. J Immunol, 1998;161(2):776–781.

    PubMed  CAS  Google Scholar 

  49. Conant K, Ma M, Nath A, et al. Extracellular human immunodeficiency virus type 1 Tat protein is associated with an increase in both NFkappa B binding and protein kinase C activity in primary human astrocytes. J Virol, 1996;70(3):1384–1389.

    PubMed  CAS  Google Scholar 

  50. Ott M, Lovett JL, Mueller L, et al. Superinduction of IL-8 in T cells by HIV-1 Tat protein is mediated through NF-kappa B factors. J Immunol, 1998; 160(6):2872–2880.

    PubMed  CAS  Google Scholar 

  51. Ambrosino C, Ruocco MR, Chen X, et al. HIV-1 Tat induces the expression of the interleukin-6 (IL6) gene by binding to the IL6 leader RNA and by interacting with CAAT enhancer-binding protein beta (NF-IL6) transcription factors. J Biol Chem, 1997;272(23): 14883–14892.

    Article  PubMed  CAS  Google Scholar 

  52. Huang L, Bosch I, Hofmann W, et al. Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors and promotes infection with both macrophage-tropic and T-lymphotropic HIV-1 strains. J Virol, 1998;72(11):8952–8960.

    PubMed  CAS  Google Scholar 

  53. Frankel AD. Peptide models of Tat-TAR protein-RNA interaction. Protein Science, 1992;1:1539–1542.

    Article  PubMed  CAS  Google Scholar 

  54. Wei P, Garber ME, Fang SM, et al. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell, 1998;92(4):451–462.

    Article  PubMed  CAS  Google Scholar 

  55. Browning C, Smith M, Roeder R, et al. Transcriptional activation and synergy of G1-2/THP proto-oncogene with HIV Tat. J Virol, 2001; in press.

    Google Scholar 

  56. Gaynor R. Cellular transcription factors involved in the regulation of HIV-1 gene expression. AIDS, 1992;6:347–363.

    PubMed  CAS  Google Scholar 

  57. Pereira LA, Bentley K, Peeters A, et al. A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res, 2000;28(3):663–668.

    Article  PubMed  CAS  Google Scholar 

  58. Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol, 1997;9(2):240–246.

    Article  PubMed  CAS  Google Scholar 

  59. Canonne-Hergaux F, Aunis D, Schaeffer E. Interactions of the transcription factor AP-1 with the long terminal repeat of different human immunodeficiency virus type 1 strains in Jurkat, glial, and neuronal cells. J Virol, 1995;69(11):6634–6642.

    PubMed  CAS  Google Scholar 

  60. Kinoshita S, Chen B, Kaneshima H, Nolan G. Host control of HIV-1 parasitism in T cells by the nuclear factor of activated T cells. Cell, 1998;95:595–604.

    Article  PubMed  CAS  Google Scholar 

  61. Perelson AS, Neumann AU, Markowitz M, et al. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science, 1996;271(5255):1582–1586.

    PubMed  CAS  Google Scholar 

  62. Freed EO. HIV-1 gag proteins: diverse functions in the virus life cycle. Virology, 1998;251(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  63. Freed EO, Orenstein JM, Buckler-White AJ, et al. Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. J Virol, 1994;68(8):5311–5320.

    PubMed  CAS  Google Scholar 

  64. Rhee SS, Hunter E. A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus. Cell, 1990;63(1):77–86.

    Article  PubMed  CAS  Google Scholar 

  65. Hill CP, Worthylake D, Bancroft DP, et al. Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci USA, 1996;93(7):3099–3104.

    Article  PubMed  CAS  Google Scholar 

  66. Luban J. Absconding with the chaperone: essential cyclophilin-Gag interaction in HIV-1 virions. Cell, 1996;87(7):1157–1159.

    Google Scholar 

  67. Aberham C, Weber S, Phares W. Spontaneous mutations in the human immunodeficiency virus type 1 gag gene that affect viral replication in the presence of cyclosporins. J Virol, 1996;70(6):3536–3544.

    Google Scholar 

  68. Rice WG, Supko JG, Malspeis L, et al. Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS. Science, 1995;270(5239):1194–1197.

    PubMed  CAS  Google Scholar 

  69. Ott DE, Hewes SM, Alvord WG, et al. Inhibition of Friend virus replication by a compound that reacts with the nucleocapsid zinc finger: anti-retroviral effect demonstrated in vivo. Virology, 1998;243(2):283–292.

    Article  PubMed  CAS  Google Scholar 

  70. Dunn BM, Gustchina A, Wlodawer A, et al. Kay J. Subsite preferences of retroviral proteinases. Methods Enzymol, 1994;241:254–278

    PubMed  CAS  Google Scholar 

  71. Condra JH, Schleif WA, Blahy OM, et al. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors [see comments]. Nature, 1995;374(6522):569–571.

    Article  PubMed  CAS  Google Scholar 

  72. Coffin JM. HIV population dynamics in vivo: Implications for genetic variation, pathogenesis and therapy. Science, 1995;267:483–489.

    PubMed  CAS  Google Scholar 

  73. Robertson DL, Sharp PM, McCutchan FE, et al. Recombination in HIV-1 [letter]. Nature, 1995;374(6518): 124–126.

    Article  PubMed  CAS  Google Scholar 

  74. Robertson DL, Hahn BH, Sharp PM. Recombination in AIDS viruses. Journal of Mol. Evol, 1995;40:249–259.

    CAS  Google Scholar 

  75. Renjifo B, Chaplin B, Mwakagile D, et al. HIV-1 subtypes A,C,D and inter-subtype recombinant genotypes in newborns of Dar-es-Salaam, Tanzania. AIDS Res Hum Retro, 1998;14:635–638.

    CAS  Google Scholar 

  76. Blackard JT, Renjifo BR, Mwakagile D, et al. Transmission of human immunodeficiency type 1 viruses with intersubtype recombinant long terminal repeat sequences. Virology, 1999;254(2):220–225.

    Article  PubMed  CAS  Google Scholar 

  77. Wain-Hobson S. The fastest genome evolution ever described: HIV variation in situ. Curr Opin Genet Dev, 1993;3(6):878–883.

    PubMed  CAS  Google Scholar 

  78. Miller MD, Bor YC, Bushman F. Target DNA capture by HIV-1 integration complexes. Curr Biol, 1995; 5(9):1047–1056.

    Article  PubMed  CAS  Google Scholar 

  79. Farnet CM, Bushman FD, HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell, 1997;88(4):483–492.

    Article  PubMed  CAS  Google Scholar 

  80. Wyatt R, Kwong PD, Desjardins E, et al. The antigenie structure of the HIV gp120 envelope glycoprotein [see comments]. Nature, 1998;393(6686):705–711.

    PubMed  CAS  Google Scholar 

  81. Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science, 1998;280(5371):1884–1888.

    Article  PubMed  CAS  Google Scholar 

  82. Hernandez LD, Hoffman LR, Wolfsberg TG, et al. Virus-cell and cell-cell fusion. Annu Rev Cell Dev Biol, 1996;12:627–661.

    Article  PubMed  CAS  Google Scholar 

  83. Chan DC, Fass D, Berger JM, et al. Core structure of gp41 from the HIV envelope glycoprotein. Cell, 1997;89(2):263–273.

    Article  PubMed  CAS  Google Scholar 

  84. Agostini I, Navarro JM, Rey F, et al. The human immunodeficiency virus type 1 Vpr transactivator: cooperation with promoter-bound activator domains and binding to TFIIB. J Mol Biol, 1996;261(5):599–606.

    Article  PubMed  CAS  Google Scholar 

  85. Wang L, Mukherjee S, Jia F, et al. Interaction of virion protein Vpr of human immunodeficiency virus type 1 with cellular transcription factor Spl and trans-activation of viral long terminal repeat. J Biol Chem, 1995;270(43):25564–25569.

    Article  PubMed  CAS  Google Scholar 

  86. Felzien LK, Woffendin C, Hottiger MO, et al. HIV transcriptional activation by the accessory protein, VPR, is mediated by the p300 co-activator. Proc Natl Acad Sci USA, 1998;95(9):5281–5286.

    Article  PubMed  CAS  Google Scholar 

  87. Bour S, Schubert U, Strebel K. The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of CD4: implications for the mechanism of degradation. J Virol, 1995;69(3):1510–1520.

    PubMed  CAS  Google Scholar 

  88. Cohen EA, Subbramanian RA, Gottlinger HG. Role of auxiliary proteins in retroviral morphogenesis. Curr Top Microbiol Immunol, 1996;214: 219–235.

    PubMed  CAS  Google Scholar 

  89. Hope TJ. Viral RNA export. Chem Biol, 1997;4(5):335–344.

    Article  PubMed  CAS  Google Scholar 

  90. Mangasarian A, Trono D. The multifaceted role of HIV Nef Res Virol, 1997;148(1):30–33.

    CAS  Google Scholar 

  91. Moarefi I, LaFevre-Bernt M, Sicheri F, et al. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement [see comments]. Nature, 1997;385(6617):650–653.

    Article  PubMed  CAS  Google Scholar 

  92. Manninen A, Herma Renkema G, Saksela K. Synergistic activation of NFAT by HIV-1 nef and the Ras/MAPK pathway. J Biol Chem, 2000;275(22):16513–16517.

    Article  PubMed  CAS  Google Scholar 

  93. Wang JK, Kiyokawa E, Verdin E, et al. The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc Natl Acad Sci USA, 2000;97(1):394–399.

    PubMed  CAS  Google Scholar 

  94. Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor: functional cDNA cloning of a seven transmembrane, G protein-coupled receptor. Science, 1996;272:872–877.

    PubMed  CAS  Google Scholar 

  95. Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MIP-lalpha, MIP-lbeta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 1996;272(5270):1955–1958.

    PubMed  CAS  Google Scholar 

  96. Berger EA, Doms RW, Fenyo EM, et al. A new classification for HIV-1 [letter]. Nature, 1998;391(6664):240.

    Article  PubMed  CAS  Google Scholar 

  97. Clapham PR, Reeves JD, Simmons G, et al. HIV coreceptors, cell tropism and inhibition by chemokine receptor ligands. Mol Membr Biol, 1999;16(1):49–55.

    PubMed  CAS  Google Scholar 

  98. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol, 1999;17:657–700.

    Article  PubMed  CAS  Google Scholar 

  99. Littman DR. Chemokine receptors: keys to AIDS pathogenesis? Cell, 1998;93(5):677–680.

    Article  PubMed  CAS  Google Scholar 

  100. He J, Chen Y, Farzan M, et al. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature, 1997;385(6617):645–649.

    Article  PubMed  CAS  Google Scholar 

  101. Chan DC, Kim PS. HIV entry and its inhibition. Cell, 1998;93(5):681–684.

    Article  PubMed  CAS  Google Scholar 

  102. Furuta RA, Wild CT, Weng Y, et al. Capture of an early fusion-active conformation of HIV-1 gp41 [published erratum appears in Nat Struct Biol 1998 Jul;5(7):612]. Nat Struct Biol, 1998;5(4): 276–279.

    Article  PubMed  CAS  Google Scholar 

  103. Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene [see comments]. Nature, 1996;382(6593):722–725.

    Article  PubMed  CAS  Google Scholar 

  104. Williamson C, Loubser SA, Brice B, et al. Allelic frequencies of host genetic variants influencing susceptibility to HIV-1 infection and disease in South African populations. AIDS, 2000;14(4):449–451.

    PubMed  CAS  Google Scholar 

  105. Martinson JJ, Chapman NH, Rees DC, et al. Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet, 1997; 16(1): 100–103.

    Article  PubMed  CAS  Google Scholar 

  106. McDermott DH, Zimmerman PA, Ouignard F, et al. CCR5 promoter polymorphism and HIV-1 disease progression. Multicenter AIDS Cohort Study (MACS). Lancet, 1998;352(9131):866–870.

    Article  PubMed  CAS  Google Scholar 

  107. Winkler C, Modi W, Smith MW, et al. Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC) [see comments], Science, 1998;279(5349):389–393.

    Article  PubMed  CAS  Google Scholar 

  108. Eigen M, Biebricher C. Sequence space and quasi-species distribution. In: Domingo E, Holland, J.J, and Ahlquist, P., ed. RNA Genetics. Vol. 3. Boca Raton, FL: CRC Press; 1988:211–245.

    Google Scholar 

  109. Simpson GG. The meaning of evolution. New Haven, CT: Yale University Press; 1949.

    Google Scholar 

  110. Maynard Smith J, Burian R, Kauffman Sea. Developmental constraints and evolution. Quarterly Review of Biology, 1985;60:265–287.

    Google Scholar 

  111. Goudsmit J, de Ronde A, de Rooij E, et al. Broad spectrum of in vivo fitness ofhuman immunodeficiency virus type 1 subpopulations differing at reverse transcriptase codons 41 and 215. J Virol, 1997;71(6):4479–4484.

    PubMed  CAS  Google Scholar 

  112. Overbaugh J, Anderson RJ, Ndinya-Achola JO, et al. Distinct but related human immuniodeficeincy virus type 1 variant populations in genital secretions and blood. AIDS Res, Human Retroviruses, 1996;12:107–115.

    CAS  Google Scholar 

  113. Poss M, Martin HL, Kreiss JK, et al. Diversity in virus populations from genital secretions and peripheral blood from women recently infected with human immumodeficiency virus type 1. J Virol, 1995;69:8118–8122.

    PubMed  CAS  Google Scholar 

  114. Zhu T, Wang N, Carr A, et al. Genetic characterization ofhuman immunodeficiency virus type 1 in blood and genital secretions: evidence for viral compartmentalization and selection during sexual transmission. J Virol, 1996;70:3098–3107.

    PubMed  CAS  Google Scholar 

  115. Poss M, Rodrigo AG, Gosink JJ, et al. Evolution of envelope sequences from the genital tract and peripheral blood of women infected with clade A human immunodeficiency virus type 1. J Virol, 1998;72(10):8240–8251.

    PubMed  CAS  Google Scholar 

  116. Kampinga G, Simonon A, Van de Perre P, et al. Primary infections with HIV-1 of women and their offspring in Rwanda: findings of heterogeneity at seroconversion, coinfection, and recombinants of HIV-1 subtypes A and C. Virology, 1997;227:63–76.

    Article  PubMed  CAS  Google Scholar 

  117. Kanki PJ, Travers K, MBoup S, et al. Slower heterosexual spread of HIV-2 than HIV-1. Lancet, 1994;343:943–946.

    Article  PubMed  CAS  Google Scholar 

  118. Adjorlolo-Johnson G, De Cock KM, Ekpini E, et al. Prospective comparison of mother-to-child transmission of HIV-1 and HIV-2 in Abidjan, Ivory Coast. JAMA, 1994;272(6):462–466.

    Article  PubMed  CAS  Google Scholar 

  119. Del Mistro A, Chotard J, Hall AJ, et al. HIV-1 and HIV-2 seroprevalence rates in mother-child pairs living in The Gambia (West Africa). J Acquir Immune Defic Syndr, 1992;5(1):19–24.

    PubMed  Google Scholar 

  120. Marlink R, Kanki P, Thior K, et al. Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science, 1994;265:1587–1590.

    PubMed  CAS  Google Scholar 

  121. Tscherning C, Alaeus A, Fredrikson R, et al. Differences in chemokine coreceptor usage between genetic subtypes of HIV-1. Virology, 1998;241:181–188.

    Article  PubMed  CAS  Google Scholar 

  122. Björnal Å, Sönerborg A, Tschering C, et al. Phenotypic Characteristics of Human Immunodeficiency Virus Type 1 Subtype C Isolates of Ethiopian AIDS Patients. AIDS Research Hum Retroviruses, 1999;15(7):647–653.

    Google Scholar 

  123. Neilson JR, John GC, Carr JK, et al. Subtypes of HIV-1 and Disease Stage among Women in Nairobi, Kenya. J. Virol, 1999;73(5):4393–4403.

    PubMed  CAS  Google Scholar 

  124. Verhoef K, Sanders R, Fontaine V, et al. Evolution of the Human Immunodeficiency Virus Type 1 Long Terminal Repeat Promoter by Conversion of an NF-kB Enhancer Element into a GABP Binding Site. J. Virol, 1999;73(2):1331–1340.

    PubMed  CAS  Google Scholar 

  125. Kanki PJ, Hamel DG, Sankale J-L, et al. HIV-1 subtypes differ in disease progression. J. Infect. Dis., 1999;179(1):68–73.

    Article  PubMed  CAS  Google Scholar 

  126. Weniger BG, Takebe Y, Ou CY, et al. The molecular epidemiology of HIV in Asia. AIDS, 1994;8:S13–S28.

    PubMed  Google Scholar 

  127. Stanecki KA, and Way PO. The Dynamic HIV/AIDS Pandemic. In: Tarantola D, Mann J, eds. AIDS in the World II. New York: Oxford Press, 1996:41.

    Google Scholar 

  128. Neilson JR, John GC, Carr JK, et al. Subtypes of human immunodeficiency virus type 1 and disease stage among women in Nairobi, Kenya. J Virol, 1999:73(5):4393–4403.

    PubMed  CAS  Google Scholar 

  129. Naghavi M, Schwartz S, Sonerborg A, et al. Long terminal repeat promoter/enhancer activity of different subtypes of HIV type 1. AIDS Res Hum Retroviruses, 1999;15(14):1293–1303.

    Article  PubMed  CAS  Google Scholar 

  130. Clerici M, Butto S, Lukwiya M, et al. Immune activation in Africa is environmentally-driven and is associated with upregulation of CCR5. Italian-Ugandan AIDS Project [In Process Citation]. AIDS, 2000;14(14):2083–2092.

    PubMed  CAS  Google Scholar 

  131. Rizzardini G, Trabattoni D, Saresella M, et al. Immune activation in HIV-infected African individuals. Italian-Ugandan AIDS cooperation program. AIDS, 1998;12(18):2387–2396.

    Article  PubMed  CAS  Google Scholar 

  132. Sha BE, D’Amico RD, Landay AL, et al. Evaluation of immunological markers in cervicovaginal fluid of HIV-infected and uninfected women: implications for the immunological response to HIV in the female genital tract. J AIDS and Human Retrovirol, 1997;16:161–169.

    CAS  Google Scholar 

  133. Anderson DJ, Politch JA, Tucker LD, et al. Quantitation of mediators of inflammation and immunity in genital tract secretions and their relevance to HIV type 1 transmission. AIDS Res Hum Retroviruses, 1988;14:43–49.

    Google Scholar 

  134. Ho JL, He S, Hu A, et al. Neutrophils from human immunodeficiency virus (HIV)-seronegative donors induce HIV replication from HIV-infected patients’ mononuclear cells and cell lines: an in vitro model of HIV transmission facilitated by Chlamydia trachomatis [published erratum appears in J Exp Med 1999 Nov 1;190(9):following 1362]. J Exp Med, 1995;181(4):1493–1505.

    PubMed  CAS  Google Scholar 

  135. Plummer F, Simonsen J, Cameron D, et al. Cofactors in male-female sexual transmission of human immunodeficiency virus type 1. J Infect Dis, 1991;163(2):233–239.

    PubMed  CAS  Google Scholar 

  136. Plummer FA. Heterosexual transmission of HIV-1: Interactions of conventional sexually transmitted diseases, hormone contraception and HIV-1. AIDS Res Hum Retroviruses, 1998;14(Supplement 1):5–10.

    Google Scholar 

  137. Bentwich Z, Maartens G, Torten D, et al. Concurrent infections and HIV pathogenesis [In Process Citation]. AIDS, 2000;14(14):2071–2081.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Montano, M., Williamson, C. (2002). The Molecular Virology of HIV-1. In: Essex, M., Mboup, S., Kanki, P.J., Marlink, R.G., Tlou, S.D., Holme, M. (eds) AIDS in Africa. Springer, Boston, MA. https://doi.org/10.1007/0-306-47817-X_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47817-X_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46699-1

  • Online ISBN: 978-0-306-47817-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics