Skip to main content

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 4))

Abstract

Lake sediments contain a variety of organic and inorganic remains that may be used to track the history of a lake or its catchment. Shells, head-shields, post-abdomens and claws of Cladocera are among the most frequently found animal remains in sedimentary deposits. They have played an important role in providing information on various environmental events and disturbances affecting lake status, such as climatic changes, trophic oscillations, acidification, and water-level changes. Yet, one major problem has been to relate sediment core findings to animal ecology. As in the case of other organism groups, many contradictory records and opinions have been presented concerning their paleoecology and indicator value of cladocerans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alhonen, P., 1970. On the significance of the planktonic/littoral ratio in the cladoceran stratigraphy of lake sediments. Comm. Biol. 35: 1–9.

    Google Scholar 

  • Alhonen, P., 1972. Gallträsket: The geological development and palaeolimnology of a small, polluted lake in Southern Finland. Comm. Biol. 57: 1–36.

    Google Scholar 

  • Alhonen, P., 1985. Lake restoration: a sediment limnological approach. Aqua Fenn. 15: 269–273.

    CAS  Google Scholar 

  • Allan, J. D., 1976. Life history patterns in Zooplankton. Am. Nat. 110: 165–180.

    Google Scholar 

  • Allan, J. D. & C. E. Goulden, 1980. Some aspects of reproductive variation among freshwater zoo-plankton. In Kerfoot, C. W. (ed.) Evolution and Ecology of Zooplankton Communities. University Press of New England: 388–410.

    Google Scholar 

  • Amoros, C., 1980. Structure et fonctionnement des écosystèmes du Haut-Rhône francais. 15 — Structure des peuplements de Cladocéres et Copépodes de deus anciens méandres d’âges différents. Acta Oecol., Ecol. Gen. 1: 193–208.

    Google Scholar 

  • Amoros, C. & G. van Urk, 1989. Paleoecological analyses of large rivers: some principles and methods. In Petts, G. (ed.) Historical Change of Large Alluvial Rivers. John Wiley and Sons, New York: 143–157.

    Google Scholar 

  • Arzet, K., D. Krause-Dellin & C. Stenberg, 1986. Acidification of four lakes in the Federal Republic of Germany as reflected by diatom assemblages, cladoceran remains, and sediment chemistry. In Smol, J. P., R. W. Battarbee, R. W. Davis & J. Meriläinen (eds.) Diatoms and Lake Acidity. Dr. W. Junk Dordrecht, Netherlands: 227–250.

    Google Scholar 

  • Binford, M. W., 1982. Ecological history of Lake Valencia, Venezuela: interpretation of animal microfossil and some chemical, physical, and geological features. Ecol. Monogr. 52: 307–333.

    Google Scholar 

  • Binford, M. W., 1986. Ecological correlates of net accumulation rates of Cladocera remains in lake sediments. Hydrobiologia 143: 123–128.

    CAS  Google Scholar 

  • Birks, H. H., M. C. Whiteside, D. M. Stark & R. C. Bright, 1976. Recent palaeolimnology of three lakes in north-western Minnesota. Quat. Res. 6: 249–272.

    Google Scholar 

  • Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds.) Statistical Modelling of Quaternary Science Data. Quaternary Science Association, Cambridge: 161–254.

    Google Scholar 

  • Birks, H. J. B., 1998. Numerical tools in palaeolimnology — progress, potentialities, and problems. J. Paleolim. 20: 307–332.

    Google Scholar 

  • Black, A. R., 1993. Predator-induced phenotypic plasticity in Daphnia pulex Life history and morphological responses to Notonecta and Chaoborus. Limnol. Oceanogr. 38: 986–996.

    Google Scholar 

  • Bos, D., 2000. Sedimentary cladoceran remains, a key to interpreting past changes in nutrients and trophic interactions. PhD thesis, Queen’s University, Kingston, Ontario, 191 pp.

    Google Scholar 

  • Bos, D. G., B. F. Cumming, C. E. Watters & J. P. Smol, 1996. The relationship between Zooplankton, conductivity, and lake-water ionic composition in 111 lakes from the Interior Plateau of British Columbia, Canada. Int. J. Salt. Res. 5: 1–15.

    Google Scholar 

  • Bos, D. G., B. F. Cumming & J. P. Smol, 1999. Cladocera and Anostraca from the Interior Plateau of British Columbia, Canada, as paleolimnological indicaors of salinity and lake level. Hydrobiologia 392: 129–141.

    CAS  Google Scholar 

  • Boucherie, M. M., 1982. An ecological history of Elk Lake, Clearwater Co., Minnesota, based on Cladocera remains, Ph.D. thesis, Indiana Univeristy, 128 pp.

    Google Scholar 

  • Boucherie, M. M. & H. Ziillig, 1983. Cladoceran remains as evidence of change in trophic state in three Swiss lakes. Hydrobiologia 103: 141–146.

    Google Scholar 

  • Bradbury, J. P. & M. C. Whiteside, 1980. Paleolimnology of two lakes in the Kutlan Glacier region, Yukon Territory, Canada. Quat. Res. 14: 149–168.

    CAS  Google Scholar 

  • Brakke, D. F., 1980. Atmospheric deposition in Norway during the last 300 years as recorded in SNSF lake sediments. III Cladoceran community structure and stratigraphy. In Drablos, D. & A. Tollan (eds.) Ecological Impact of Acid Precipitation. SNSF projet, Oslo, Norway: 272–273.

    Google Scholar 

  • Brakke, D. F, R. B. Davis & K. H. Kenlan, 1984. Acidification and changes over time in chydorid cladocera assemblage of New England lakes. In Hendrey, G. R. (ed.) Early Biotic Responses to Advancing Lake Acidification. Butterworth, Boston (MA): 85–104.

    Google Scholar 

  • Brehm, V, G. Krasske & W. Krieger, 1948. Subfossile tierische Reste und Algen in Schwarzee bei Kitzbühel. Österr. Bot. Zeit. 95: 74–83.

    Google Scholar 

  • Brett, M. T., 1989. Zooplankton communities and acidification processes (a review). Wat. Air Soil. Pollut. 44: 387–414.

    CAS  Google Scholar 

  • Brodersen, K. P., M. C. Whiteside & C. Lindegaard, 1998. Reconstruction of trophic state in Danish lakes using subfossil chydorid (Cladocera) assemblages. Can. J. Fish. Aquat. Sci. 55: 1093–1103.

    Google Scholar 

  • Brooks, J. L., 1957. The systematics of North American Daphnia. Mem. Conn. Acad. Arts Sci. 13: 1–180.

    Google Scholar 

  • Brooks, J. L., 1959. Cladocera. In Edmondson, W. T. (ed.) Freshwater Biology. 2nd Edition. John Wiley & Sons: 587–656.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.

    CAS  Google Scholar 

  • Carter, J. C. H., M. J. Dadswell, J. C. Rolf & W. G. Sprules, 1980. Distribution and zoogeography of planktonic crustaceans and dipterans in glaciated eastern North America. Can. J. Zool. 58: 1355–1387.

    Google Scholar 

  • Carvalho, G. R., 1987. The clonal ecology of Daphnia magna II. Thermal differentiation among seasonal clones. J. Anim. Ecol. 56: 469–478.

    Google Scholar 

  • Carvalho, G. R. & H. G. Wolf, 1989. Resting eggs of lake-Daphnia I. Distribution, abundance and hatching of eggs collected from various depths in lake sediments. Freshwat. Biol. 22: 459–470.

    Google Scholar 

  • Charles, D. F. & J. P. Smol, 1994. Long-term chemical changes in lakes: quantitative inferences from biotic remains in the sediment record. In Baker, L. (ed.) Environmental Chemistry of Lakes and Reservoirs. Advances in chemistry series 237, Washington, DC. Am. Chem. Soc: 3–31.

    Google Scholar 

  • Charles, D. F., M. W. Binford, E. T. Furlong, R. A. Hites, M. J. Mitchell, S.A. Norton, F. Oldfield, M. J. Paterson, J. P. Smol, A. J. Uutala, J. R. White, D. R. Whitehead & R. J. Wise, 1990. Paleoecological investigation of recent acidification in the Adirondack Mountains, N.Y. J. Paleolim. 3: 195–241.

    Google Scholar 

  • Chengalath, R., 1982. A faunistic and ecological survey of the littoral Cladocera of Canada. Can J. Zool. 60: 2668–2682.

    Google Scholar 

  • Chengalath, R. & B. J. Hann, 1981. Two new species of Alona (Chydoridae, Cladocera) from western Canada. Can. J. Zool. 59: 377–389.

    Google Scholar 

  • Colbourne, J. K., P. D. N. Hebert & D. J. Taylor, 1997. Evolutionary origins of phenotypic diversity in Daphnia. In Givnish, T. J. & K. J. Systma (eds.) Molecular Evolution and Adaptive Radiation. Cambridge University Press: 163–189.

    Google Scholar 

  • Cotten, C. A., 1985. Cladoceran assemblages related to lake conditions in Eastern Finland. Ph.D. thesis, Indiana University, Bloomington, 96 pp.

    Google Scholar 

  • Crease, T. J. & D. J. Taylor, 1998. The origin and evolution of variable-region helices in V4 and V7 of the small-subunit ribosomal RNA of branchiopod crustaceans. Mol. Biol. Evol. 15: 1430–1446.

    CAS  Google Scholar 

  • Crisman, T. L. & D. R. Whitehead, 1978. Palaeolimnological studies on small New England (U. S. A.) ponds. II Cladoceran community responses to trophic oscillations. Pol. Arch. Hydrobiol. 25: 75–86.

    Google Scholar 

  • Dearing, J., 1986. Core correlation and total sediment influx. In Berglund, B. (ed.) Handbook of Palaeoecology and Palaeohydrology, John Wiley and Sons, New York: 247–270.

    Google Scholar 

  • DeCosta, J., 1964. Latitudinal distribution of chydorid Cladocera in the Mississippi Valley, based on their remains in surficial lake sediments. Invest. Indiana Lakes & Streams 6: 65–101.

    Google Scholar 

  • DeCosta, J., 1968. The history of the Chydorid (Cladocera) community of a small lake in the Wind River Mountains, Wyoming, USA. Arch. Hydrobiol. 64: 400–425.

    Google Scholar 

  • DeCosta, J., 1975. The crustacean plankton of an acid reservoir. Verh. Int. Ver. Limnol. 19:1805–1813.

    Google Scholar 

  • DeCosta, J. & A. Janicki, 1978. Population dynamics and age structure of Bosmina longirostris in an acid water impoundment. Verh. int. Ver. Limnol. 20: 2479–2483

    Google Scholar 

  • Deevey, E. S., 1964. Preliminary account of fossilization of Zooplankton in Rogers Lake. Verh. int. Ver. Limnol. 115:981–992.

    Google Scholar 

  • Deevey, E. S., 1969. Cladoceran populations of Rogers Lake, Connecticut, during late- and postglacial time. Mitt. int. Ver. Limnol. 17: 56–63.

    Google Scholar 

  • Deevey, E. S. & G. B. Deevey, 1971. The American species of Eubosmina Seligo (Crustacea, Cladocera). Limnol. Oceanogr. 16: 201–218.

    Google Scholar 

  • De Melo, R. D. & P. D. N. Hebert, 1994. A taxonomic reevaluation of the North American Bosminidae. Can. J. Zool. 72: 1808–1825.

    Google Scholar 

  • Dexter, R. W, 1959. Anostraca. In Edmondson, W. T. (ed.) Freshwater Biology. John Wiley & Sons, New York: 558–571.

    Google Scholar 

  • Dodson, S. I. & D. G. Frey, 1991. Cladocera and Other Branchipoda. In Thorpe, J. H. & A. P. Covich (eds.) Ecology and Classification of North American Freshwater Invertebrates. Academic Press, Inc. Toronto: 723–786.

    Google Scholar 

  • Dodson, S. I. & T. Hanazato, 1995. Commentary on effects of anthropogenic and natural organic chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystem. Environ. Health Perspect. 103: 7–11.

    CAS  Google Scholar 

  • Duigan, C. A. & H. H. Birks, 2000. The late-glacial and early-Holocene palaeoecology of clado-ceran microfossil assemblages at Kråkenes, western Norway, with quantitative reconstruction of temperature changes. J. Paleolim. 23: 67–76.

    Google Scholar 

  • DuMont, H. J., 1994. On the diversity of the Cladocera in the tropics. Hydrobiologia 272: 27–38.

    Google Scholar 

  • Eder, E., W. Hödl & R. Gottwald, 1997. Distribution and phenology of large branchiopods in Austria. Hydrobiologia 359: 13–22.

    Google Scholar 

  • Edmondson, W. T., 1957. Trophic relations of the Zooplankton. Trans, am. mic. Soc. Vol. LXXVI, No. 3.

    Google Scholar 

  • Ender, A., K. Schwenk, T. Stadler, B. Streit & B. Schierwater, 1996. RAPD identification of microsatellites in Daphnia. Mol. Ecol. 5: 437–442.

    CAS  Google Scholar 

  • Fernando, C. H., 1980. The freshewater Zooplankton of Sri Lanka, with discussion of tropical freshwater Zooplankton composition. Int. Revue ges. Hydrobiol. 65: 85–125.

    Google Scholar 

  • Flössner, D., 1964. Zur Cladocerenfauna des Stechlinsee-Gebietes. IL Ökologische Untersuchungen über die litoralen Arten. Limnologica 2: 35–103.

    Google Scholar 

  • Flössner, D., 1972. Krebstiere, Crustacea. Kiemen- und Blattfüsser, Branchiopoda, Fischläuse, Branchiura. In: Die Tierwelt Deutschlands. G. Fischer, Jena, 501 pp.

    Google Scholar 

  • Flössner, D., 1990. Die Geschichte der Cladocerenfauna des Kleinen Barsch-Sees, eines sauren, kalkarmen Moorweihers im mitteleuropäishen Flachland. Limnologica 21: 125–135.

    Google Scholar 

  • Flössner, D. & K. Kraus, 1977. On the variability and taxonomy of Pleuroxus denticulatus Birge (Cladoecra: Chydoridae). J. Fish Res. Bd Can. 34: 463–476.

    Google Scholar 

  • Frey, D. G., 1958. The late-glacial cladoceran fauna of a small lake. Arch. Hydrobiol. 54: 209–275.

    Google Scholar 

  • Frey, D. G., 1959. The taxonomic and phylogenetic significance of the head pores of the Chyoridae (Cladocera). Int. Revue ges. Hydrobiol. 44: 27–50.

    Google Scholar 

  • Frey, D. G., 1960. The ecological significance of cladoceran remains in lake sediments. Ecology 41: 684–698.

    Google Scholar 

  • Frey, D. G., 1962. Cladocera from the Eemian Interglacial of Denmark. J. Palaeontol. 36: 1133–1154.

    Google Scholar 

  • Frey, D. G., 1965. Differentation of Alona costata Sars from two related species (Cladocera, Chydoridae). Crustaceana 8: 159–173.

    Google Scholar 

  • Frey, D. G., 1967. Cladocera in space and time. Proceedings of Symposium on Crustacea Part I: 1–9.

    Google Scholar 

  • Frey, D. G., 1976. Interpretation of Quaternary paleoecology from Cladocera and midges, and prognosis regarding usability of other organisms. Can. J. Zool. 54: 2208–2226.

    Google Scholar 

  • Frey, D. G., 1979. Cladocera Analysis. In Berglund, B. (ed.) Palaeohydrological Changes in the Temperate Zone in the Last 15,000 Years. IGCP Project 158 B. Lake and mire environments. Vol II. Univ. of Lund, Sweden: 227–257.

    Google Scholar 

  • Frey, D. G., 1980. On the plurality of Chydorus sphaericus (O.F. Müller) (Cladocera, Chydoridae), and designation of a neotype from Sjœlsø, Denmark. Hydrobiologia 69: 83–123.

    Google Scholar 

  • Frey, D. G., 1982. Relocation of Chydorus barroisi and related species (Cladocera, Chydoridae) to a new genus and descriptions of two new species. Hydrobiologia 86: 231–269.

    Google Scholar 

  • Frey, D. G., 1985. A new species of the Chydorus sphaericus group (Cladocera, Chydoridae) from western Monatna. Int. Revue ges. Hydrobiol. 69: 3–20.

    Google Scholar 

  • Frey, D. G., 1986a. Cladocera Analysis. In Berglund, B. (ed.) Handbook of Palaeoecology and Palaeohydrology. John Wiley and Sons, New York: 667–692.

    Google Scholar 

  • Frey, D. G., 1986b. The non-cosmopolitanism of chydorid cladocera: implications for biogeography and evolution. In Gore, R. H. & K. L. Heck (eds.) Crustacean Biogeography. A. A. Balkema, Rotterdam: 237–256.

    Google Scholar 

  • Frey, D., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J. Paleolim. 1: 179–191.

    Google Scholar 

  • Frey, D., 1993. The penetration of Cladocera into saline waters. Hydrobiologia 267: 233–248.

    Google Scholar 

  • Frey, D. G. & B. J. Hann, 1985. Growth in Cladocera. In Wenner, A. M. (ed.) Crustacean Issues, Vol. 2. Crustacean Growth. A. A. Balkema, Rotterdam: 315–335.

    Google Scholar 

  • Fryer, G., 1980. Acidity and species diversity in freshwater crustacean faunas. Freshwat. Biol. 10: 41–45.

    Google Scholar 

  • Fryer, G. & O. Forshaw, 1979. The freshwater Crustacea of Rhum (Inner Hebrides)—a faunistic and ecological survey. Biol. J. Linnean Soc. 11: 333–367.

    Google Scholar 

  • Fryer, G., 1993. The Freshwater Fauna of Yorkshire. A Faunistic and Ecological Survey. Yorkshire Naturalists’ Union & Leeds Philosophical & Literary Society, 312 pp.

    Google Scholar 

  • George, D. & G. Harris, 1985. The effect of climate on long-term changes in the crustacean biomass of Lake Windermere, UK. Nature 316: 536–539.

    Google Scholar 

  • Gillooly, J. F. & S. I. Dodson, 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnol. Oceanogr. 45: 22–30.

    Google Scholar 

  • Goss, B. L. & D. L. Bunting, 1983. Daphnia development and reproduction: Responses to temperature. J. Therm. Biol. 8: 375–380.

    Google Scholar 

  • Goulden, C. E., 1964. The history of the Cladoceran fauna of Esthwaite water (England) and its limnological significance. Arch. Hydrobiol. 60: 1–52.

    Google Scholar 

  • Goulden, C. E., 1969. Interpretative studies of cladoceran microfossils in lake sediments. Mitt. int. Ver. Limnol. 17: 43–55.

    Google Scholar 

  • Goulden, C. E. & D. G. Frey, 1963. The occurence and significance of lateral head pores in the Genus Bosmina (Cladocera). Int. Revue ges. Hydrobiol. 48: 513–522.

    Google Scholar 

  • Green, G. D., 1997. Water fleas, http://royal.okanagan.bc.ca/newsletr/v2nl/ggindex.html

    Google Scholar 

  • Hairston, N. G. Jr., W. Lampert, C. E. Cáceres, C. L. Holtmeier, L. J. Weider, U. Gaedke, J. M. Fischer, J. A. Fox & D. M. Post, 1999. Rapid evolution revealed by dormant eggs. Nature: 401–446.

    Google Scholar 

  • Hann, B. J., 1980. Occurrence and distribution of littoral Chydoridae (Crustacea, Cladocera) in Ontario, Canada, and taxonomic notes on some species. Can. J. Zool. 59: 1465–1474.

    Google Scholar 

  • Hann, B. J., 1989. Cladocera. Methods in Quaternary Ecology. Geosci. Canada 16: 17–26.

    Google Scholar 

  • Hann, B. J. & P. Karrow, 1984. Pleistocene paleoecology of the Don and Scarborough Formations, Toronto, Canada, based on cladoceran microfossils at the Don Valley Brickyard. Boreas 13: 377–391.

    Google Scholar 

  • Hann, B. J. & B. G. Warner, 1987. Late Quaternary Cladocera from coastal British Columbia, Canada: A record of climatic or limnologic change? Arch. Hydrobiol. 110: 161–177.

    Google Scholar 

  • Hann, B. J. & P. Karrow, 1993. Comparative analysis of cladoceran microfossils in the Don and Scarborough Formations, Toronto, Canada. J. Paleolim. 9: 223–241.

    Google Scholar 

  • Hann, B. J., P. R. Leavitt & P. S. S. Chang, 1994. Cladocera community response to experimental eutrophication in Lake 227 as recorded in laminated sediments. Can. J. Fish. Aquat. Sci. 51: 2312–2321.

    Google Scholar 

  • Hanner, R. H., 1997. Taxonomic problems with phylogenetic solutions derived from the integration of biochemical, morphological and molecular data. Ph.D. thesis. University of Oregon, USA. (http://www.darkwing.uoregon.edu/ykim/butterfly/table/ykim/butterfly/table).

    Google Scholar 

  • Harmsworth, R. V, 1968. The developmental history of Blelham Tarn (England) as shown by animal microfossils, with special reference to the Cladocera. Ecol. Monogr. 38: 223–241.

    Google Scholar 

  • Harmsworth, R. V. & M. C. Whiteside, 1968. Relation of Cladoceran remains in lake sediments to primary productivity of lakes. Ecology 49: 998–1000.

    Google Scholar 

  • Hathaway, S. A. & M. A. Simovich, 1996. Factors affecting the distribution and co-occurrence of two southern californian anostracans (Branchiopoda), Branchinecta sandiegonensis and Streptocephalus woottoni. J. Crustacean Biol. 16: 669–677.

    Google Scholar 

  • Havas, M. & B. O. Rosseland, 1995. Response of Zooplankton, benthos, and fish to acidification: an overview. Wat., Air Soil Pollut. 85: 51–62.

    CAS  Google Scholar 

  • Havens, K. E. & J. DeCosta, 1987. The role of aluminium contamination in determining phytoplankton and Zooplankton responses to acidification. Wat., Air Soil Pollut. 33: 277 – 293.

    CAS  Google Scholar 

  • Hebert, P. D. N. & B. J. Hann, 1986. Patterns in the composition of arctic tundra pond microcrustacean communities. Can. J. Fish. Aquat. Sci. 43: 1416–1425.

    Google Scholar 

  • Henning, M., H. Herte, H. Wall & J.-G. Kohl, 1991. Strain-specific influence of Microcystis aeruginosa on food ingestion and assimilation of some cladocerans and copepods. Int. Revue ges. Hydrobiol. 76: 37–45.

    Google Scholar 

  • Heywood, R. B., 1983. Inland waters. In Laws, R. M. (ed.) Antarctic Ecology. Academic Press: 279–344.

    Google Scholar 

  • Hofmann, W., 1977. Bosmina (Eubosmina) populations of the Grosser Segeberger See during late glacial and postglacial times. Arch. Hydrobiol. 3: 349–359.

    Google Scholar 

  • Hofmann, W., 1978. Bosmina (Eubosmina) populations of Großer Plöner See and Schöhsee lakes during late-glacial and postglacial times. Pol. Arch. Hydrobiol. 25: 167–176.

    Google Scholar 

  • Hofmann, W., 1983. Stratigraphy of Cladocera and Chironomidae in a core from a shallow North German lake. Hydrobiologia 103: 235–239.

    Google Scholar 

  • Hofmann, W., 1984. Postglacial morphological variation in Bosmina longispina Leydig (Crustacea, Cladocera) from the Grosser Plöner See (north Germany) and its taxonomic implications, Z. zool. Syst. Evolut.-forsch. 22: 294–301.

    Google Scholar 

  • Hofmann, W., 1986. Developmental history of the Grosser Plöner See and the Schöhsee (north Germany): cladoceran analysis, with special reference to eutrophication. Arch. Hydrobiol., Suppl. Bd. 74: 259–287.

    Google Scholar 

  • Hofmann, W., 1987. Cladocera in space and time: analysis of lake sediments. Hydrobiologia 145:315–321.

    Google Scholar 

  • Hofmann, W., 1993. Dynamics of a littoral Cladorcera assemblage under the influence of climatic and water depth changes from Alleröd to Subboreal. Verh. int. Ver. Limnol. 25: 1095–1101.

    Google Scholar 

  • Hofmann, W., 1996. Empirical relationships between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments. Hydrobiologia 318: 195–201.

    Google Scholar 

  • Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. J. Paleolim. 19: 55–62.

    Google Scholar 

  • Hrbácek, J., 1969. On the possibility of estimating predation pressure and nutrition level of populations of Daphnia (Crust., Cladoc.) from their remains in sediments. Mitt. int. Ver. Limnol. 17: 269–274.

    Google Scholar 

  • Huttunen, P. & J. Turkia, 1990. Surface sediment diatom assemblages and lake acidity. In Kauppi, P., P. Anttila & K. Kenttämies (eds.) Acidification in Finland. Berlin/Heidelberg: Springer-Verlag: 995–1008.

    Google Scholar 

  • Huttunen, P., J. Meriläinen, C. Cotton & J. Rönkkö, 1988. Attempts to reconstruct lakewater pH and colour from sedimentary diatoms and Cladocera. Int. Ver. Limnol. 23: 870–873.

    Google Scholar 

  • Hyvärinen, H. & P. Alhonen, 1994. Holocene lake-level changes in the Fennoscandian tree-line region, western Finnish Lapland: diatom and cladoceran evidence. The Holocene 4: 251–258.

    Google Scholar 

  • Järvinen, M. & K. Salonen, 1998. Influence of changing food web structure on nutrient limitation of phytoplankton in a highly humic lake. Can. J. Fish. Aquat. Sci. 55: 2562–2571.

    Google Scholar 

  • Jeppesen, E., E. A. Madsen, J. P. Jensen & N. J. Anderson, 1996. Reconstructing the past density of planktivorous fish and trophic structure from sedimentary Zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshwat. Biol. 35: 115–127.

    Google Scholar 

  • Jurasz, W. & C. Amoros, 1991. Ecological succession in a former meander of the Rhône River, France, reconstructed by Cladocera remains. J. Paleolim. 6: 113–122.

    Google Scholar 

  • Kerfoot, W. C., 1974. Net accumulation rates and the history of cladoceran communities. Ecology 55:51–61.

    Google Scholar 

  • Kerfoot, W. C., 1977. Implications of copepod predation. Limnol. Oceanogr. 22: 316–325.

    Google Scholar 

  • Kerfoot, W. C., 1981. Long-term replacement cycles in cladoceran communities: a history of predation. Ecology 62: 216–233.

    Google Scholar 

  • Kerfoot, W. C. & M. Lynch, 1987. Branchiopod communities: Associations with planktivorous fish in space and time. In Kerfoot, M. C. & A. Sih (eds.) Predation, Direct and Indirect Impacts on Aquatic Communities. University Press of New England, 386 pp.

    Google Scholar 

  • Kerfoot, W. C. & K. L. Kirk, 1991. Degree of taste discrimination among suspension-feeding cladocerans and copepods: Implications for detrivory and herbivory. Limnol. Oceanogr. 36: 1107–1123.

    Google Scholar 

  • King, J. L., M. A. Simovich & R. C. Brusca, 1996. Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools. Hydrobiologia 328: 85–116.

    Google Scholar 

  • Korhola, A., 1990. Paleolimnology and hydroseral development of the Kotasuo Bog, Southern Finland, with special reference to the Cladocera. Ann. Acad. Sci. Fenn. A. III. 155: 1–40.

    Google Scholar 

  • Korhola, A., 1992. The Early Holocene hydrosere in a small acid hill-top basin studied using crustacean sedimentary remains. J. Paleolim. 7: 1–22.

    Google Scholar 

  • Korhola, A., 1999. Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22: 357–373.

    Google Scholar 

  • Korhola, A. & M. Tikkanen, 1991. Holocene development and early extreme acidification in a small hilltop lake in southern Finland. Boreas 20: 333–356.

    Google Scholar 

  • Korhola, A., H. Olander & T. Blom, 2000. Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakes. J. Paleolim. 24: 43–54.

    Google Scholar 

  • Korhola, A., S. Sorvari, M. Rautio, P. G. Appleby, J. A. Dearing, Y. Hy, N. Rose, A. Lami & N. G. Cameron, in press. A multi-proxy analysis of climate impacts on recent development of subarctic Lake Saanajärvi in Finnish Lapland. J. Paleolim.

    Google Scholar 

  • Krause-Dellin, D. & C. Steinberg, 1986. Cladoceran remains as indicators of lake acidification. Hydrobiologia 143: 129–143.

    CAS  Google Scholar 

  • Lewis, W. M., 1995. Tropical lakes: How latitude makes a difference. In Timotius, K. H. & F. Goltenboth (eds.) Tropical Limnology, Vol. 1. Springer, New York: 29–44.

    Google Scholar 

  • Lieder, U., 1983a. Revision of the genus Bosmina Baird, (1845) (Crustacea, Cladocera). Int. Revue ges. Hydrobiol. 68: 121–139.

    Google Scholar 

  • Lieder, U., 1983b. Introgression as a factor in the evolution of polytypical plankton cladocera. Int. Revue ges. Hydrobiol. 68: 269–284.

    Google Scholar 

  • Lieder, U., 1983c. Die Arten der Untergattung Eubosmina Seligo, 1900 (Crustacea, Cladocera, Bosminidae). Mitt. Zool. Mus. Berlin 59: 195–292.

    Google Scholar 

  • Lieder, U., 1986. Bosmina and Daphnia taxonomically critical groups among the Cladocera (Crustacea Phyllopoda). Limnologica 17: 53–66.

    Google Scholar 

  • Löffler, H., 1969. High altitude lakes in the Mt. Everest region. Verh. int. Ver. Limnol. 17: 373–385.

    Google Scholar 

  • Löffler, H., 1993. Anostraca, Notostraca, Laevicaudata and Spinicaudata of the Pannonian region and in its Austrian area. Hydrobiologia 264: 169–174.

    Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.

    Google Scholar 

  • Lotter, A. F, H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.

    Google Scholar 

  • Lotter, A. F., H. J. B. Birks, U. Eicher, W. Hofmann, J. Schwander & L. Wick, 2000. Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran asemblages. Palaeogr. Palaeoeclim. Palaeoecol. 159: 349–361.

    Google Scholar 

  • LRC Core Facility Handbook, 1997. Information, Procedures and Training Manual. Limnological Research Center, University of Minnesota, http://lrc.geo.umn.edu/services/handbook/index.html.

    Google Scholar 

  • Marcus, N. H., R. Lutz, W. Brunnet & P. Cable, 1994. Age, viability, and vertical distribution of Zooplankton resting eggs from an anoxic basin: evidence of an egg bank. Limnol. Oceanogr. 39:154–158.

    Google Scholar 

  • Marmorek, D. R. & J. Korman, 1993. The use of Zooplankton in a biomonitoring program to detect lake acidification and recovery. Wat., Air Soil Pollut. 69: 223–241.

    CAS  Google Scholar 

  • Megard, R. O., 1967. Three new species of Alona (Cladocera, Chydoridae) from the United States. Int. Revue ges. Hydrobiol. 52: 37–50.

    Google Scholar 

  • Meijering, W. P. D., 1983. On the occurrence of “arctic” Cladocera with special reference to those along the Strait of Belle Isle (Quebec, Labrador, Newfoundland). Int. Revue ges. Hydrobiol. 68: 885–893.

    Google Scholar 

  • Mikulski, J. S., 1978. Man impact upon Goplo Lake as reflected in cladoceran-community remnants in sediments. Pol. Arch. Hydrobiol. 25: 291–295.

    Google Scholar 

  • Moghraby, A. I., 1977. A study of diapause of Zooplankton in a tropical river—the Blue Nile. Freshwat. Biol. 7:207–212.

    Google Scholar 

  • Moore, M. V., C. F. Folt & R. S. Stemberger, 1996. Consequences of elevated temperatures for Zooplankton assemblages in temperate lakes. Arch. Hydrobiol. 135: 289–319.

    Google Scholar 

  • Moritz, C., 1987. A note on the hatching and viability of Ceriodaphnia ephippia collected from lake sediments. Hydrobiologia 145: 309–314.

    Google Scholar 

  • Mueller, W. P., 1964. The distribution of cladoceran remains in surficial sediments from three northern Indiana Lakes. Invest. Indiana Lakes & Streams 1: 1–63.

    Google Scholar 

  • Müller, H., 1985. The niches of Bosmina coregoni and Bosmina longirostris in the ecosystem of Lake Constance. Verh. int. Ver. Limnol. 17: 56–63.

    Google Scholar 

  • Nauwerck, A., 1988. Veränderungen in Zooplankton des Mondsees 1943–1988. Ber. Nat.-Med. Ver. Salzburg 9: 101–133.

    Google Scholar 

  • Nauwerck, A., 1991. The history of the genus Eubosmina in Lake Mondsee (Upper Austria). Hydrobiologia 225: 87–103.

    Google Scholar 

  • Nilssen, J. P., 1978. Selective vertebrate and invertebrate predation—some palaeolimnological implications. Pol. Arch. Hydrobiol. 25: 307–320.

    Google Scholar 

  • Nilssen, J. & P. Larsson, 1980. The systematical position of the most common Fennoscandian Bosmina (Eubosmina). Sond. Zeitschr. Zool. Syst. Evol. B 18, Heft 1: 62–68.

    Google Scholar 

  • Nilssen, J. P. & S. Sandøy, 1990. Recent lake acidification and cladoceran dynamics: surface sediment and core analysis from lakes in Norway, Scotland and Sweden. Phil. Trans, r. Soc., Lond. B. 327: 299–309.

    CAS  Google Scholar 

  • Nilssen, J. P., G. Halvorsen & J. Melåen, 1980. Seasonal divergence of Bosmina morphs. Int. Revue ges. Hydrobiol. 65: 507–516.

    Google Scholar 

  • Ojaveer, H. & A. Lumberg, 1995. On the role of Cercopagis (Cercopagis) pengoi (Ostroumov) in Parmi Bay and the NE part of the Gulf of Riga ecosystem. Proc. Estonian Acad. Sci. Ecol. 5: 20–25.

    Google Scholar 

  • Patalas, K., 1964. The crustacean plankton communities in 52 lakes of different altitudinal zones of Northern Colorado.-Verh. int. Ver. Limnol. 15: 719–726.

    Google Scholar 

  • Patalas, K., 1990. Diversity of the Zooplankton communities in Canadian lakes as a function of climate. Verh. int. Ver. Limnol. 24: 360–368.

    Google Scholar 

  • Patalas, J. & Patalas, K. 1966: The crustacean plankton communities in Polish lakes. Verh. int. Ver. Limnol. 16: 204–215.

    Google Scholar 

  • Paterson, M. J., 1994. Paleolimnological reconstruction of recent changes in assemblages of Cladocera from acidified lakes in the Adirondack Mountains (New York). J. Paleolim. 11: 189–200.

    Google Scholar 

  • Pennak, R. W., 1989. Fresh-Water Invertebrates of the United States: Protozoa to Mollusca. John Wiley and Sons, Inc., Toronto, Canada: 369–409.

    Google Scholar 

  • Rautio, M., 1998. Community structure of crustacean Zooplankton in subarctic ponds—effects of altitude and physical heterogenity. Ecography 21: 327–335.

    Google Scholar 

  • Rautio, M., S. Sorvari & A. Korhola, 2000. Diatom and crustacean Zooplankton communities, their seasonal variability and representativeness in the sediment of subarctic Lake Saanajärvi. J. Limnol. 59: 81–96.

    Google Scholar 

  • Rautio, M., 2001. Zooplankton assemblages related to environmental characteristics in treeline ponds in Finnish Lapland. Arct. Antarct. Alp. Res. 33: 289–298.

    Google Scholar 

  • Reynolds, J. D., 1979. Crustacean Zooplankton of some saline lakes of central British Columbia. Syesis 12: 169–173.

    Google Scholar 

  • Rothaupt, K. O., 1990. Resource competition of herbivorous Zooplankton: a review of approaches and perspectives. Arch. Hydrobiol. 118: 1–29.

    Google Scholar 

  • Rowe, C. L. & P. D. N. Hebert, 1999. Cladoceran Web Site. University of Guelph. http://www.cladocera.uoguelph.ca/

    Google Scholar 

  • Salo, J., M. Walls, M. Rajasilta, J. Sarvala, M. Räsänen & V.-R Salonen, 1989. Fish predation and reduction in body size in a Cladoceran population: palaeoecological evidence. Freshwat. Biol. 21:217–221.

    Google Scholar 

  • Sand0y, S. & J. P. Nilssen, 1986. A geographical survey of littoral crustacea in Norway and their use in paleolimnology. Hydrobiologia 143: 277–286.

    Google Scholar 

  • Sarvala, J. & S. Halsinaho, 1990. Crustacean Zooplankton of Finnish forest lakes in relation to acidity and other environmental factors. In Kauppi, P., P. Anttila & K. Kenttämies (eds.) Acidification in Finland. Springer-Verlag, Berlin: 1009–1027.

    Google Scholar 

  • Sarmaja-Korjonen, K., 1999. Headshields of ephippial Chydorus piger Sars (Cladocera, Chydoridae) females from northern Finnish Lapland: a long period of gamogenesis? Hydrobiologia 390: 11–18.

    Google Scholar 

  • Sarmaja-Korjonen, K. & P. Alhonen, 1999. Cladoceran and diatom evidence of lake-level fluctuations from a Finnish lake and the effect of aquatic-moss layers on microfossil assemblages. J. Paleolim. 22: 277–290.

    Google Scholar 

  • Sarmaja-Korjonen, K. & H. Hyvärinen, 1999. Cladoceran and diatom stratigraphy of calcerous lake sediments from Kuusamo, NE Finland. Indications of Holocene lake-level changes. Fennia 177: 55–70.

    Google Scholar 

  • Sarmaja-Korjonen, K., M. Hakojärvi & A. Korhola, 2000. Subfossil remains of an unknown Chydorid (Anomopoda: Chydoridae) from Finland. Hydrobiologia 436: 165–169.

    Google Scholar 

  • Schwenk, K., A. Ender & B. Streit, 1995. What can molecular markers tell us about the evolutionary history of Daphnia species complexes? Hydrobiologia 307: 1–7.

    Google Scholar 

  • Scourfield, D. J. & J. P. Harding, 1966. A key to the British Freshwater Cladocera. Freshwater Biological Association, Windermere. Third edition, 1966. (Reprinted 1994), 61 pp.

    Google Scholar 

  • Sergeev, V. & W. D. Williams, 1983. Daphniopsis pusilla Serventy (Cladocera:Daphniidae), in important element in the fauna of Australian salt lakes. Hydrobiologia 100: 293–300.

    Google Scholar 

  • Smirnov, N. N., 1971a. Fauna of the U.S.S.R., Crustacea. Academy of Sciences of the U.S.S.R. 1(2). Translated from Russian, Israel Program for Scientific Translations, Jerusalem, 1974, New Series no. 101.

    Google Scholar 

  • Smirnov, N. N., 1971b. A new species of Archedaphnia (Cladocera, Crustacea) from Jurassic deposits of Transbaykal. Paleont. J. (In Russian) 5: 391–392.

    Google Scholar 

  • Smirnov, N. N., 1978. Metody I nekotoryye resul’taty istoricheskoy biotsenologii vetvistousykh rakoobraznyhk. In Polyakov, G. D. (ed.) Ekologiya Soobshchestv Ozera Glubokogo. Izdatel’stvo Nauka, Moscow: 105–173.

    Google Scholar 

  • Steinberg, C., H. Hartmann, K. Arzet & D. Krause-Dellin, 1988. Paleoindication of acidification in Kleiner Arbersee (Federal Republic of Germany, Bavarian Forest) by chydorids, chrysophytes, and diatoms. J. Paleolim. 1: 149–157.

    Google Scholar 

  • Stemberger, R., A. Herlihy, D. Kugler & S. Paulsen, 1996. Climatic forcing on Zooplankton richness in lakes of the northeastern United States. Limnol. Oceanogr. 41: 1093–1101.

    Google Scholar 

  • Synerholm, C., 1979. The Chydorid cladocera from surface lake sediments in Minnesota and North Dakota. Arch. Hydrobiol. 86: 137–151.

    CAS  Google Scholar 

  • Szeroczynska, K., 1991. Impact of prehistoric settlements on the Cladocera in the sediments of Lakes Suszek, Bledowo and Skrzetuszewskie. Hydrobiologia 225: 102–114.

    Google Scholar 

  • Szeroczynska, K., 1998. Palaeolimnological investigations in Poland based on Cladocera (Crustacea). Palaeogeogr. Palaeoclim. Palaeoecol. 140: 335–345.

    Google Scholar 

  • Thorp, J. H. & A. P. Covich, 1991. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, Inc., 911 pp.

    Google Scholar 

  • Tolonen, A., 1998. Size-specific food selection and growth in benthic whitefish, Coregonus lavaretus (L.), in a subarctic lake. Boreal Env. Res. 2: 387–399.

    Google Scholar 

  • Tsukada, M., 1967. Fossil Cladocera in Lake Nojiri and ecological order. Quat. Res. 6: 101–110.

    Google Scholar 

  • Uimonen-Simola, P. & K. Tolonen, 1987. Effects of recent acidification on Cladocera in small clear-water lakes studied by means of sedimentary remains. Hydrobiologia 145: 343–351.

    CAS  Google Scholar 

  • Viitasalo, M. & T. Katajisto, 1994. Mesozooplankton resting eggs in the Baltic Sea: identification and vertical distribution in laminated and mixed sediments. Marine Biol. 120: 455–465.

    Google Scholar 

  • Viitasalo, M., I. Vuorinen & S. Saesmaa, 1995. Mesozooplankton dynamics in the northern Baltic Sea: implications of variations in hydrography and climate. J. Plankton Res. 17: 1857–1878.

    Google Scholar 

  • Walossek, D., 1993. The Upper Cambrian Rehbachiella kinnekullensis Müller, 1983, and the phylogeny of Branchiopoda and Crustacea. Fossils and Strata 32: 1–202.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology. 2nd Edition. Saunders College Publishing, Fort Worth, 767 pp.

    Google Scholar 

  • Whiteside, M. C., 1970. Danish chydorid Cladocera: modern ecology and core studies. Ecol. Monogr. 40:79–118.

    Google Scholar 

  • Whiteside, M. C. & R. V. Harmsworth, 1967. Species diversity in chydorid (Cladocera) communities. Ecology 48: 644–677.

    Google Scholar 

  • Whiteside, M. C. & M. R. Swindoll, 1988. Guidelines and limitations to cladoceran paleoecological interpretations. Palaeogr. Palaeoeclim. Palaeoecol. 62: 405–412.

    Google Scholar 

  • Whiteside, M., J. Williams & C. White, 1978. Seasonal abundance and pattern of chydorid cladocera in mud and vegetative habitats. Ecology 59: 1177–1188.

    Google Scholar 

  • Yan, N. D. & R. Strus, 1980. Crustacean Zooplankton communities of acidic, metal-contaminated lakes near Sudbury, Ontario. Can. J. Fish. Aquat. Sci. 37: 2282–2293.

    CAS  Google Scholar 

  • Zaret, M., 1980. The effects of prey motion on planktivore choice. In Kerfoot, W. C. (ed.) Evolution and Ecology of Zooplankton Communities. New England: 594–603.

    Google Scholar 

  • Zaret, T. M. & W. C. Kerfoot, 1975. Fish predation on Bosmina longimstris body-size selection versus visibility selection. Ecology 56: 232–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Korhola, A., Rautio, M. (2001). Cladocera and Other Branchiopod Crustaceans. In: Smol, J.P., Birks, H.J.B., Last, W.M. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, vol 4. Springer, Dordrecht. https://doi.org/10.1007/0-306-47671-1_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47671-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6034-1

  • Online ISBN: 978-0-306-47671-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics