Skip to main content

Model Systems for Assessing Cognitive Function: Implications for HIV-1 Infection and Drugs of Abuse

  • Chapter
Neuroimmune Circuits, Drugs of Abuse, and Infectious Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 493))

Abstract

Memory deficits are common among drug abusers and in those with chronic neurodegenerative disorders. Currently, the mechanisms through which diverse neurophysiologic processes alter memory are not known. This review describes the current systems and rationale for studying memory formation, consolidation, and recall. Special attention is given to physiologic (hippocampal long-term potentiation) and behavioral animal models. The principles and methods described can be applied to studies of diverse clinical disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xiong H, Zheng J, Thylin M, Gendelman HE. 1999. Unraveling the mechanims of neurotoxocity in HIV type 1-associated dementia: inhibition of neuronal synaptic transmission by macrophage secretory products. AIDS Res Hum Retrov. 15(l):57–63

    CAS  Google Scholar 

  2. Zheng J, Gendelman HE. 1997. The HIV-1 associated dementia complex: a metabolic encephalopathy fueled by viral replication in mononuclear phagocytes. Curr Opin Neurol. 10(4):319–25

    PubMed  CAS  Google Scholar 

  3. Mellon SH. 1994. Neurosteroids: biochemistry, modes of action, and clinical relevance. J Clin Endocrinol Metab. 78:1003–8

    Article  PubMed  CAS  Google Scholar 

  4. Mclntosh LJ, Sapolsky RM. 1996. Glucocorticoids may enhance oxygen radical-mediated neurotoxicity Neurotoxiology. 17(3–4):873–882

    Google Scholar 

  5. Chan, et. al. 1996. Endocrine modulators of neuronal death. Brain Pathol. 6(4):481–91 Mellon SH. 1994. Neurosteroids: biochemistry, modes of action, and clinical relevance. J Clin Endocrinol Metab. 78:1003–8

    PubMed  CAS  Google Scholar 

  6. Limoges J, Persidsky Y, Bock P, Gendelman HE. 1997. Dexamethasone worsens the neuropathology of human immunodeficiency virus type 1 encephalitis in SCID mice. J Infec Dis. 175(6): 1368–81

    Article  CAS  Google Scholar 

  7. McIntosh LJ, Cortopassi KM, Sapolsky RM. 1998. Glucocorticoids may alter antioxidant enzyme capacity in the brain: kainic acid studies. Brain Res. 79l(l–2):215–22

    Google Scholar 

  8. Ghorpade A, et. al. Human immunodeficiency virus neurotropism: an analysis of viral replication and cytopathicity for divergent strains in monocytes and microglia. J Virol. 72(4):3340–50

    Google Scholar 

  9. Persidsky Y, Gendelman HE. 1997. Development of laboratory and animal model systems for HIV-1 encephalitis and its associated dementia. J Leuk Biol. 62(l):100–6

    CAS  Google Scholar 

  10. Persidsky Y, et. al. 1996. Human immunodeficiency virus encephalitis in SCID mice. Am J Pathol 149(3): 1027–53

    PubMed  CAS  Google Scholar 

  11. Crawley JN. 1999. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 835(1): 18–26

    Article  PubMed  CAS  Google Scholar 

  12. Steele PM, Medina JF, Nores WL, Mauk MD. 1998. Using genetic mutations to study the neural basis of behavior. Cell. 95(7):879–82

    Article  PubMed  CAS  Google Scholar 

  13. Picciotto MR, Wickman K. 1998. Using knockout mice to study neurophysiology and behavior. Physiol Rev. 78(4): 1131–63

    PubMed  CAS  Google Scholar 

  14. Stone CP. 1929. The age factor in animal learning: II. Rats on a multiple light discrimination box and a difficult maze. Genet Psychol Monog. 6:125–202

    Google Scholar 

  15. Stone CP. 1929. The age factor in learning: I. Rats in the problem box and the maze. Genet Psychol Monog. 5:1–130

    Google Scholar 

  16. Leeper RL. 1932. The reliability and validity of maze experiments with white rats. Genet Psychol Monog. 7:137–245

    Google Scholar 

  17. Olton DS. 1987. The radial arm maze as a tool in behavioral pharmacology. Physiol and Behav. 40:793–7

    CAS  Google Scholar 

  18. Morris ROM. 1981. Spatial localization does not require the presence of local cues. Learn Motiv. 12:239–60

    Article  Google Scholar 

  19. Morris RGM. 1984. Developments of a water maze procedure for studying spatial learning in the rat. J Neurosci Meth. 11:47–60

    CAS  Google Scholar 

  20. Crawley JN. 1999. Behavioral phenotyping of transgenic mice and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 835(l):18–26

    PubMed  CAS  Google Scholar 

  21. Rodgers RJ, Cole JC. 1993. Influence of social isolation, gender, strain, and prior novelty on plus-maze behaviour in mice. Physiol and Behav. 54(4):729–36

    CAS  Google Scholar 

  22. Barondes SH, Cohen HD. 1968. Delayed and sustained effect of acetoxycycloheximide in mice. Proc Nat Acad Sci USA. 58:157–164

    Google Scholar 

  23. Barondes SH, Cohen HD. 1968. Memory impairment after subcutaneous injection of acetoxycycloheximide. Science. 160:556–7

    PubMed  CAS  Google Scholar 

  24. Cohen HD, Barondes. 1968. Effect of acetoxycycloheximide on learning and memory of a light-dark discrimination. Nature. 218:271–3

    PubMed  CAS  Google Scholar 

  25. Barondes SH, Cohen HD. 1970. Cerebral protein synthesis inhibitors block long-term memory. Int. Rev. Neurobiol. 13:177–205

    Google Scholar 

  26. Squire LR, Barondes SH. 1972. Variable decay of memory and its recovery in cycloheximide-treate mice. Proc Nat Acad Sci USA 69(6): 1416–20

    PubMed  CAS  Google Scholar 

  27. Squire LH, Barondes SH. 1970. Actinomycin-D effects on memory at different times after training. Nature 225:649–50

    Article  PubMed  CAS  Google Scholar 

  28. D’Olhaberriague L, et al. 1998. Preliminary clinical-radiological assessment of MR tissue signature model in human sroke. J Neural Sci 156:158–66

    Google Scholar 

  29. van Everdingen KJ, et al. 1998. Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke. 29(9): 1783–90

    PubMed  Google Scholar 

  30. Nagesh V, et al. 1998. Time course of ADCW changes in ischemic stroke: beyond the human eye. Stroke. 29(9): 1778–82

    PubMed  CAS  Google Scholar 

  31. Berent S, et al. 1999. Neuropsychological function and cerebral glucose utilization in isolated memory impairment and Alzheimer’s disease. J Psychiatr Res. 33(1):7–16

    PubMed  CAS  Google Scholar 

  32. Doyle E, Nolan PM, Bell R, Regan CM. 1992. Intraventricular infusions of anti-neural cell adhesion molecules in a discrete posttraining period impair consolidation of a passive avoidance response in the rat. J Neurochem 59:1570–3

    PubMed  CAS  Google Scholar 

  33. O’Connell C, O’Malley A, and Regan CM. 1997. Transient, learning-induced ultrastructural changes in spatially clustered dentate granule cells of the adult rat hippocampus. Neuroscience. 76:55–62

    Google Scholar 

  34. Schwegler H, Crusio WE. 1995. Correlations between radial-maze learning and structural variations of septum and hippcampus in rodents. Behav Brain Res. 67:29–41

    Article  PubMed  CAS  Google Scholar 

  35. Gomez RA, Pozzo-Miller LD, Aoki A, Ramirez OA. 1990. Long-term potentiation-induced synaptic changes in hippocampal dentate gyrus of rats with an inborn low or high learning capacity. Brain Res. 537(l–2):293–7

    PubMed  CAS  Google Scholar 

  36. O’Malley, O’Connell C, Regan CM. 1998. Ultrastructural analysis reveals avoidance conditioning to induce a transient increase in hippocampal dentate spine density in the 6 hour post-training period of consolidation. Neuroscience. 87(3):607–13

    Google Scholar 

  37. Shapiro ML, Eichenbaum H. 1999. Hippocampus as a memory map: synaptic plasticiy and memory encoding by hippocampal neurons. Hippocampus. 9(4):365–85

    Article  PubMed  CAS  Google Scholar 

  38. O’Keefe J, Nadel L. 1978. The hippocampus as a cognitive map. Clarendon Press. Oxford.

    Google Scholar 

  39. Scoville WB, Milner B. 1957. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiat 20:11–21

    Article  PubMed  CAS  Google Scholar 

  40. van Hulzen ZJ, van der Staay. 1991. Spatial memory processing during hippocampal long-term potentiation in rats. Physiol Behav. 50(1): 121–7

    PubMed  Google Scholar 

  41. Castro CA, Silbert LH, McNaughton BL, Barnes CA. 1989. Recovery of spatial learning deficits after decay of electrically induced synaptic enhancement in the hippocampus. Nature. 342:545–8

    Article  PubMed  CAS  Google Scholar 

  42. Andersen P, Blackstad TW, Lomo T. 1966. Location and identification of excitatory synapses on hippocampal pyramidal cells. Exp Brain Res. 1:236–48

    Article  PubMed  CAS  Google Scholar 

  43. Bliss TVP, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabit following stimulation of the perforant path. 1973. J Physiol Lond. 232:331–56

    PubMed  CAS  Google Scholar 

  44. Muller W, Connor JA. 1991. Dendritic spines as individual neuronal compartments for synaptic Ca++ responses. Nature. 354:73–6

    PubMed  CAS  Google Scholar 

  45. Jahr CE, Stevens CF. 1987. Glutamate activates multiple single channel conductances in hippocampal neurons. Nature. 325:522–5

    Article  PubMed  CAS  Google Scholar 

  46. Grover LM, Teyler TJ. 1990. Two components of long-term potentiation induced by different patterns of afferent activation. Nature. 347:477–9

    Article  PubMed  CAS  Google Scholar 

  47. Lynch G, Larson J, Kelso S, Barrioneuvo G, Schottler F. 1983. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature. 305:719–21

    Article  PubMed  CAS  Google Scholar 

  48. Malinow R, Miller JP. 1986. Post-synaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation. Nature. 320:529–30

    Article  PubMed  CAS  Google Scholar 

  49. Kelso SR, Ganong AH, Brown TH. 1986. Hebbian synapses in hippocampus. Proc Natl Acad Sci USA. 83:5326–5330

    PubMed  CAS  Google Scholar 

  50. Malenka RC, Kauer JA, Zucker RC, Nicoll RA. 1988. Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science. 242:81–4

    PubMed  CAS  Google Scholar 

  51. Bading H, Ginty DD, Greenberg ME. 1993. Regulation of gene expression in hippocampal neurons through distinct calcium signaling pathways. Science. 260:181–6

    PubMed  CAS  Google Scholar 

  52. Ghosh A, Greenberg ME. 1995. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 268:239–247

    PubMed  CAS  Google Scholar 

  53. Staubli U, Lynch G. 1987. Stable hippocampal long-term potentiation elicited by ‘theta’ pattern stimulation. Brain Res. 435(l–2):227–34

    PubMed  CAS  Google Scholar 

  54. Weisz DJ, Clark GA, Thompson RF. 1984. Increased responsivity of dentate granule cells during nictitating membrane response conditioning in rabbit. Behav Brain Res. 12:145–54

    Article  PubMed  CAS  Google Scholar 

  55. Ishihara K, Mitsuno K, Ishikawa M, Sasa M. 1997. Behavioal LTP during learning in rat hippcampal CA3. Behav Brain Res. 83:235–8

    Article  PubMed  CAS  Google Scholar 

  56. Berger TW. 1984. Long-term potentiation of hippocampal synaptic transmission affects rate of behavioral learning. Science. 224:627–30

    PubMed  CAS  Google Scholar 

  57. Steinmetz JE, Rosen DJ, Chapman PF, Lavond DG, Thompson RF. 1986. Classical conditioning of the rabbit eyelid response with mossy-fiber stimulation CS: I. Pontine nuclei and middle cerebral peduncle stimulation. Behav Neurosci. 100(6):878–87

    Article  PubMed  CAS  Google Scholar 

  58. Lavond DG, Knowlton BJ, Steinmetz JE, Thompson RF. 1987. Classical conditioning of the rabbit eyelid response with mossy-fiber stimulation CS: II. Lateral reticular nucleus stimulation. Behav Neurosci. 101(5):676–82

    Article  PubMed  CAS  Google Scholar 

  59. Nguyen PV, Abel T, Kandel ER. 1994. Requirement of a critical period of transcription for induction of a late phase of LTP. Science. 265:1104–7

    PubMed  CAS  Google Scholar 

  60. Frey U, Frey S, Schollmeier F, Krug M. 1996. Influence of actinomycin D, a RNA synthesis inhibitor, on long-term potentiation in hippocampal neurons in vivo and in vitro. J Physiol Lond. 490(3):703–11

    PubMed  CAS  Google Scholar 

  61. Grecksch G, Matthies H. 1980. Two sensitive periods for the amnesic effect of anisomycin. Pharmacol Biochem. Behav. 12:663

    Article  PubMed  CAS  Google Scholar 

  62. Frey U, Krug M, Reymann KG, Matthies H. 1988. Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res. 452:57–65

    PubMed  CAS  Google Scholar 

  63. Kennedy MB, Bennett MK, Erondu NG. 1983. Biochemical and immunohistochemical evidence that the ‘major postsynaptic density protein’ is a subunit of a calmodulin-dependent protein kinase. Proc Natl Acad Sci, USA. 80:7357–7461

    PubMed  CAS  Google Scholar 

  64. Huang Y-Y, Li X-C, Kandel E. 1994. cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and a macromolecule dependent late phase. Cell. 79:69–79

    Article  PubMed  CAS  Google Scholar 

  65. Weisskopf MG, Castillo PE, Zalutsky RA, Nicoll RA 1994 Mediation of hippocampal mossy-fiber long term potentiation by cAMP. Science. 265: 1878–1882

    PubMed  CAS  Google Scholar 

  66. Nicoll RA, Malenka RC. 1995. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature. 377, 115–8

    Article  PubMed  CAS  Google Scholar 

  67. Applegate MD, Kerr DS, Landfield PW. 1987. Redistribution of synaptic vesicles during long-term potentiation n the hippocampus. Brain Res. 401(2):401–6

    Article  PubMed  CAS  Google Scholar 

  68. Pozzo-Miller LD, et al. 1999. Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J Neurosci. 19:4972–83

    PubMed  CAS  Google Scholar 

  69. Takahashi S, et al. 1999. Reduced hippocampal LTP in mice lacking a presynaptic protein: complexin II. Eur J Neurosci. 11(7):2359–66

    Article  PubMed  CAS  Google Scholar 

  70. Janz R, et al. 1999. Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron. 24(3):687–700

    Article  PubMed  CAS  Google Scholar 

  71. Malenka R, et. al. 1989. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature. 340:554–7

    Article  PubMed  CAS  Google Scholar 

  72. Malinow R, Schulman H, and Tsien RW. 1989. Inhibition of post-synaptic PKCor CAMKII blocks induction but not expression of LTP. Nature 345:862–5

    Google Scholar 

  73. Petit D, Perlman S, Malinow R. 1994. Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science. 266:1881–5

    Google Scholar 

  74. McGlade-McCulloh E, Yamamoto H, Tan SE, Brickey DA, Soderling TR. 1993. Phosphorylstion and regulation of glutamate receptors by calcium/calmodulin dependent protein kinase II. Nature. 362:640–642

    Article  PubMed  CAS  Google Scholar 

  75. Frey U, Morris RGM. 1997. Synaptic tagging and long-term potentiaition. Nature. 385:533–6

    Article  PubMed  CAS  Google Scholar 

  76. Lee HK, Kameyama K, Huganir RL, and Bear MF. NMDA induces long-term synaptic depression and dephosphorylation of GluR1 subunit of AMP A receptor in hippocampus. Neuron. 21:1151–62

    Google Scholar 

  77. Hu S-C, Chrivia J, Ghosh A. 1999. Regulation of CBP-mediated transcription by neuronal calcium signaling. Neuron. 22:799–808

    PubMed  CAS  Google Scholar 

  78. Wang L-Y, Salter MW, MacDonald JF. 1991. Regulation of kainate receptors by cAMP-dependent protein kinase and phosphatases. Science. 253:1132

    PubMed  CAS  Google Scholar 

  79. Greengard P, Jen J, Nairn AC, Stevens CF. 1991. Enhancement of the glutamate response by cAMP dependent protein kinase in hippocampal neurons. Science. 253:1135

    PubMed  CAS  Google Scholar 

  80. Frey U, Huang Y-Y, Kandel ER. 1993. Effects of cAMP simulate a late stage of LTP in hippocampal neurons. Science. 260:1661–4

    PubMed  CAS  Google Scholar 

  81. Chawla S, Hardingham GE, Quinn DR, and Bading H. 1998. CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science. 281:1505–9

    Article  PubMed  CAS  Google Scholar 

  82. Hardindham GE, Chawla S, Cruzalegui FH, and Bading H. 1999. Control of recruitment and transcription-activating function of CBP determines gene regulation by NMDA receptors and L type calcium channels. Neuron. 22:789–98

    Google Scholar 

  83. Blitzer RD, Wong T, Nouranifar R, Lyengar R, Landau M. 1995. Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron. 15:1403–14

    Article  PubMed  CAS  Google Scholar 

  84. Montiminy MR, Bilezikjian LM. 1987. Binding of a nuclear protein to the cyclic-AMP response element of the somatstatin gene. Nature. 328:175–8

    Google Scholar 

  85. Gonzales GA and Montiminy MR. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell. 59:675–80

    Google Scholar 

  86. Chen J, et al. 1998. Transgenic animals with inducible, targeted gene expression in brain. Mol Pharmacol. 54(3):495–503

    PubMed  CAS  Google Scholar 

  87. Shieh PB, Hu S, Bobb, Timmusk T, Ghosh A. 1998. Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron. 20:727–40

    Article  PubMed  CAS  Google Scholar 

  88. Mark MD, Liu Y, Wong ST, Hinds TR, Storm DR. 1995. Stimulation of neurite outgrowth in PC12 cells by EGF and and KC1 depolarization: a Ca++ independent phenomenon. J Cell Biol 130:701–710

    Article  PubMed  CAS  Google Scholar 

  89. Levy WB, Steward O. 1983. Synapses as associative memory elements in the hippocampal formation. Brain Res. 175:233–45

    Google Scholar 

  90. Bear MF, Abraham WC. 1996. Long-term depression in hippocampus. Annu Rev Neurosci. 19:437–62.

    Article  PubMed  CAS  Google Scholar 

  91. Collingridge GL, Kehl SJ, McLennan H. 1983. The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones. J Physiol Lond. 334:19–31.

    PubMed  CAS  Google Scholar 

  92. Jahr CE, Stevens CF. 1987. Glutamate activates multiple single channel conductances in hippocampal neurons. Nature. 325:522–5

    Article  PubMed  CAS  Google Scholar 

  93. Nowak L, Bregestovski P, Ascher P, Herbert A, Prochiantz A. 1984. Magnesium gates glutamate activated channels in mouse central neurones. Nature 307:462–465

    Article  PubMed  CAS  Google Scholar 

  94. Mayer ML, Westbrook GL, Guthrie PB. 1984. Voltage-dependent block by Mg2+ of NMDA receptors in spinal cord neurons. Nature. 309:263

    Article  Google Scholar 

  95. Ault B, Evans RH, Francis AA, Oakes DJ, Watkins JC. 1980. Selective depression of excitatory amino acid induced depolarizations by magnesium ions in isolated spinal cord preparations. J Physiol Lond. 307:413–28

    PubMed  CAS  Google Scholar 

  96. Morris RGM, Anderson E, Lynch GS, Baudry M. 1986. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist. Nature. 319:774–6

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Zink, W.E., Boyle, J., Persidsky, Y., Xiong, H., Gendelman, H.E. (2002). Model Systems for Assessing Cognitive Function: Implications for HIV-1 Infection and Drugs of Abuse. In: Friedman, H., Klein, T.W., Madden, J.J. (eds) Neuroimmune Circuits, Drugs of Abuse, and Infectious Diseases. Advances in Experimental Medicine and Biology, vol 493. Springer, Boston, MA. https://doi.org/10.1007/0-306-47611-8_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47611-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46466-9

  • Online ISBN: 978-0-306-47611-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics