Skip to main content

Polarization and Coherence Analysis of the Optical Two-Photon Radiation from the metastable22 S 1/2 State of Atomic Hydrogen

  • Chapter
Complete Scattering Experiments

Part of the book series: Physics of Atoms and Molecules ((PAMO))

  • 172 Accesses

Abstract

The Paper first summarizes fundamental aspects and results of the quantum electrodynamical theory of the two-photon radiationfromthe decay of the metastable 2 2 S 1/2 atomic hydrogen state. After a brief description of the second improved Stirling two-photon coincidence experiment polarization correlations of the two-photon decay are described in which both two or three linear polarizers are applied in order to test predictions of such correlations based upon quantum mechanics and local realistic theories (i.e., Einstein-Podolsky-Rosen type experiments). It is particularly noticeable that the three-polarizer coincidence measurement provided the largest difference (about 40%) between the Bell limits of local realistic theories and quantum mechanics so far. Apart from confirming in addition the correlations of right-right and left-left circularly polarized two-photon correlations a new type of coherence analysis of the two-photon radiation has been carried out experimentally and theoretically. A result of it is the measured coherence time of τ coh = 1.2 · 10 −15 s and coherence length of l coh = c · τ coh = 350 nm of the two-photon emission. By applying a theoretical model of the two-photon radiation linked to cascade transitions the coherence length can be estimated to l coh ≈ 100 nm in agreement by order of magnitude with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. W. Series, The Spectrum of Atomic Hydrogen. Advances (World Scientific, Singapore, 1988).

    Google Scholar 

  2. F. Selleri, Quantum mechanics Versus Local Realism — the Einstein-Podolsky-Rosen Paradox (Plenum Press, New York, 1988).

    Google Scholar 

  3. D. M. Greenberger and A. Zeilinger, Fundamental Problems in Quantum theory (New York Academy of Sciences, New York, 1995).

    Google Scholar 

  4. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  5. W. E. Lamb Jr. and R. C. Retherford, Phys. Rev. 72, 241 (1947).

    Article  ADS  Google Scholar 

  6. R. Novick, in Physics of the One — and Two — Electron Atoms, edited by F. Bopp and H. Kleinpoppen (North-Holland, Amsterdam, 1969), pp. 296–325.

    Google Scholar 

  7. M. Lipeles, R. Novick, and N. Tolk, Phys. Rev. Lett. 15, 690 (1996).

    Article  ADS  Google Scholar 

  8. D. O’Connell, K. J. Kollath, A. J. Duncan, and H. Kleinpoppen, J. Phys. B: At. Mol. Opt. Phys. 8, 214 (1975).

    Google Scholar 

  9. H. Krüger and A. Oed, Phys. Lett. 54A, 251 (1975).

    ADS  Google Scholar 

  10. M. Goeppert-Mayer, Ann. Phys. 9, 173 (1931).

    Google Scholar 

  11. G. Breit and E. Teller, Astrophys. J. 91, 215 (1940).

    Article  ADS  Google Scholar 

  12. G. W. F. Drake, in The Spectrum of Atomic Hydrogen. Advances, edited by G. W. Series (World Scientific, Singapore, 1988), p. 137.

    Google Scholar 

  13. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 779 (1935).

    Article  ADS  Google Scholar 

  14. A. Garuccio and F. Selleri, Phys. Lett. 103A, 99 (1984).

    ADS  MathSciNet  Google Scholar 

  15. S. Biermann, M. O. Scully, and A. H. Toor, Phys. Scr. T 72, 45 (1997).

    Article  ADS  Google Scholar 

  16. G. F. Bassani, M. Inguscio, and T. W. Hänsch, The Hydrogen Atom (Springer Verlag, 1989).

    Google Scholar 

  17. H. Friedrich, Theoretical Atomic Physics, 2 ed. (Springer Verlag, 1998).

    Google Scholar 

  18. I. E. McCarthy and E. Weigold, Electron-Atom Collisions (Cambridge Monographs, 1995).

    Google Scholar 

  19. M. Goeppert, Naturwiss. 17, 932 (1929).

    Article  MATH  ADS  Google Scholar 

  20. A. I. Akheiser and V. B. Berestetskii, Quantum Electrodynamics (Wiley, New York, 1965).

    Google Scholar 

  21. H. J. Andrä, Phys. Scr. 9, 257 (1974).

    Article  ADS  Google Scholar 

  22. H. J. Andrä, in Progress in Atomic Spectroscopy, edited by W. Hanle and H. Kleinpoppen (Plenum Press, NewYork, 1979), pp. 829–953.

    Google Scholar 

  23. A. Van Wijngaarden, G. W. F. Drake, and P. S. Farago, Phys. Rev. Lett. 33, 4 (1994).

    Article  Google Scholar 

  24. G. W. F. Drake, S. P. Goldman, and A. Van Wijngaarden, Phys. Rev. A 20, 1299 (1997).

    Article  ADS  Google Scholar 

  25. S. P. Goldman and G.W. F. Drake, Phys. Rev. A 24, 183 (1981).

    Article  ADS  Google Scholar 

  26. W. Perrie, Ph.D. thesis, University of Stirling, 1985, and [62,63].

    Google Scholar 

  27. D. Bohm and Y. Aharonov, Phys. Rev. 108, 1070 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Bacal et al., Nucl. Instr. Meth. 114, 407 (1974).

    Article  Google Scholar 

  29. M. Bacal and W. Reichelt, Sci. Instr. 20, 769 (1974).

    Article  ADS  Google Scholar 

  30. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).

    Article  ADS  Google Scholar 

  31. R. A. Holt, Ph.D. thesis, Harvard University, Cambridge, 1973.

    Google Scholar 

  32. A. J. Duncan and H. Kleinpoppen, in Quantum mechanics Versus Local Realism — the Einstein-Podolsky-Rosen Paradox, edited by F. Selleri (Plenum Press, New York, 1988), p. 175.

    Google Scholar 

  33. J. F. Bell, Physics 1, 195 (1964).

    Google Scholar 

  34. S. J. Freedman, Ph.D. thesis, University of California, Berkeley, 1972.

    Google Scholar 

  35. E. S. Fry and R. C. Thompson, Phys. Rev. Lett. 37, 465 (1976).

    Article  ADS  Google Scholar 

  36. S. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  37. V. Paramananda and D. K. Butt, J. Phys. G 13, 449 (1987).

    Article  ADS  Google Scholar 

  38. J. Brendel, E. Mohler, and W. Martienssen, Europhysics Lett. 20, 575 (1992).

    Article  ADS  Google Scholar 

  39. H. Kleinpoppen, A. J. Duncan, H.-J. Beyer, and Z. A. Sheikh, Phys. Script. T 72, 7 (1997).

    Article  ADS  Google Scholar 

  40. J. R. Torgerson, D. Branning, C. H. Monken, and L. Mandol, Phys. Rev. A51, 4400 (1995).

    ADS  Google Scholar 

  41. T. Haji-Hassan and et al., in Book of Abstracts, Fifteenth Int. Conf. Physics of Electronic and Atomic Collisions (1987), p. 74.

    Google Scholar 

  42. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 81, 3563 (1998), and [52].

    Article  ADS  Google Scholar 

  43. G. Weihs et al., Phys. Rev. Lett. 81, 5039 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Edinburgh, Scotland, 1965 and 1987).

    Google Scholar 

  45. Z. A. Sheikh, Ph.D. thesis, University of Stirling, Stirling, 1993.

    Google Scholar 

  46. A. J. Duncan, Z. A. Sheikh, H. J. Beyer, and H. H. Kleinpoppen, J. Phys. B: At. Mol. Opt. Phys. 30, 1347 (1997).

    Article  ADS  Google Scholar 

  47. J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).

    Article  ADS  Google Scholar 

  48. Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. Lett. 65, 321 (1990).

    Article  ADS  Google Scholar 

  49. P. G. Kwiat et al., Phys. Rev. A 41, 2910 (1990).

    Article  ADS  Google Scholar 

  50. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. A 45, 6659 (1992).

    Article  ADS  Google Scholar 

  51. H. Huang and J. Eberly, J. Mod. Opt. 40, 915 (1993).

    Article  ADS  Google Scholar 

  52. U. Rathe and M. Scully, Lett. Math. Phys. 34, 297 (1995), julian Schwinger Memorial Issue.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. U. Rathe, M. Scully, and S. Yellin, Fund. Problems in Quantum Theory (Annals N.Y., 1995).

    Google Scholar 

  54. H. Hanbury-Brown and R. Twiss, Phil. Mag. 45, 633 (1954), see also [64].

    Google Scholar 

  55. Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 50 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  56. Y. Shih and C. Alley, Phys. Rev. Lett. 61, 2921 (1998), see also [65].

    Article  ADS  Google Scholar 

  57. G. Rarity and P. Tapster, Phys. Rev. Lett. 64, 2495 (1990).

    Article  ADS  Google Scholar 

  58. P. Kwait, A. Steinberg, and R. Chiao, Phys. Rev. A 45, 7729 (1992).

    Article  ADS  Google Scholar 

  59. T. Herzog, P. Kwait, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 75, 3034 (1995).

    Article  ADS  Google Scholar 

  60. H. Gould and R. Marrus, Phys. Rev. 28, 2001 (1983).

    ADS  Google Scholar 

  61. D. M. Greenberger, M. Horne, and A. Zeilinger, in Bell’s Theorem, Quantum Theory and Conceptions of the Universe, edited by Kafatos (Kluwer Academic, 1989), p. 73, see also [66].

    Google Scholar 

  62. W. Perrie, A. J. Duncan, H. J. Beyer, and H. Kleinpoppen, Phys. Rev. Lett. 54, 1970 (1985).

    Google Scholar 

  63. A. J. Duncan, W. Perrie, H. J. Beyer, and H. Kleinpoppen, Fundamental Processes in Atomic Physics (Plenum Press, New York, 1985), pp. 555–572.

    Google Scholar 

  64. G. Bayin, Lect. on Quantum Mechanics (Benjamin Press, 1955).

    Google Scholar 

  65. M. Rubin, D. Klyshoko, Y. Shih, and A. Sergienk, to be published.

    Google Scholar 

  66. D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, Am. J. Phys. 58, 1131 (1990).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Duncan, A.J., Kleinpoppen, H., Sheikh, Z.A. (2002). Polarization and Coherence Analysis of the Optical Two-Photon Radiation from the metastable22 S 1/2 State of Atomic Hydrogen. In: Becker, U., Crowe, A. (eds) Complete Scattering Experiments. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/0-306-47106-X_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-47106-X_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46503-1

  • Online ISBN: 978-0-306-47106-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics