Skip to main content

Local Atomic Arrangements in Binary Solid Solutions Studied by X-Ray and Neutron Diffuse Scattering from Single Crystals

  • Chapter
Local Structure from Diffraction

Part of the book series: Fundamental Materials Research ((FMRE))

  • 375 Accesses

Conclusion

It has been demonstrated that accurate occupational probabilities and first order static displacements can be obtained from diffuse scattering measurements. It is quite remarkable that species dependent atomic displacements on the order of 0.001Å and smaller can be determined from such broad features in the diffraction pattern. The availability of this information will provide theorists with the means to test their models and challenge them to include static displacements in their ab initio calculations of phase stability. In even more general terms, knowledge about the local atomic arrangements will help us to understand the connection between local structure and bulk properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. B. Massalski, Binary Alloy Phase Diagrams, American Society for Metals, Metals Park, Ohio (1986).

    Google Scholar 

  2. S. Hashimoto, Acta Cryst. A43:481 (1987).

    CAS  Google Scholar 

  3. M. A. Krivoglaz, Theory of X-Ray and Thermal Neutron Scattering from Real Crystals, Plenum Press, New York (1969).

    Google Scholar 

  4. L. Vegard, Z. Kristallogr. 67:239 (1928).

    Google Scholar 

  5. C. J. Sparks, G. E. Ice, X. Jiang, and P. Zschack, Mater. Res. Soc. Svmp. Proc. 375:213 (1975).

    Google Scholar 

  6. G. E. Ice, C. J. Sparks, J. L. Robertson, J. E. Epperson, and X. Jiang, Mater. Res. Soc. Symp. Proc. 437:181 (1996).

    CAS  Google Scholar 

  7. B. E. Warren, B. L. Averback, and B. W. Roberts, J. Appl. Phys. 22:1493 (1951).

    Article  CAS  Google Scholar 

  8. B. Borie and C. J Sparks, Acta Cryst. A17:198 (1971).

    Google Scholar 

  9. G. E. Ice, C. J. Sparks, and L. B. Shaffer, Resonant Anomalous X-Ray Scattering: Theory and Experiment, ed. G. Materlik, C. J. Sparks, and K. Fischer, North Holland, Amsterdam (1994).

    Google Scholar 

  10. B. E. Warren, X-Ray Diffraction, Dover, New York (1969).

    Google Scholar 

  11. J. M. Cowley, J. Appl. Phys. 21:24 (1950).

    Article  CAS  Google Scholar 

  12. V. Gerold and J. Kern, Acta Metall. 35:393 (1987).

    CAS  Google Scholar 

  13. G. E. Ice, C. J. Sparks, A. Habenschuss, and L. B. Shaffer, Phys. Rev. Lett. 68:863 (1992).

    Article  CAS  Google Scholar 

  14. L. Reinhard, J. L. Robertson, S. C. Moss, G. E. Ice, P. Zschack, and C. J. Sparks, Phys. Rev.B 45:2662 (1992).

    Article  CAS  Google Scholar 

  15. B. Schönfeld, G. E. Ice, C. J. Sparks, H. G. Haubold, W. Schweika, and L. B. shaffer, Phys. Status Solidi B183:79 (1989).

    Google Scholar 

  16. X. Jiang, G. E. Ice, C. J. Sparks, J. L. Robertson, and P. Zschack, Phys. Rev. B 57:3211 (1995).

    Google Scholar 

  17. C. B. Walker and D. T. Keating, Acta Cryst. 14:1170 (1961).

    Article  CAS  Google Scholar 

  18. R. O Williams, Oak Ridge National Laboratory Report No. ORNL-4848 (1972).

    Google Scholar 

  19. P. Gerogopoulos and J. B. Cohen, J. Physique Colloque 12:C7–191 (1977).

    Google Scholar 

  20. O. Kubaschewski. Iron Binary Phase Diagrams, Springer, Berlin, (1982).

    Google Scholar 

  21. S. Hertzmanand and B. Sundman, CALPHAD 6:67 (1982).

    Google Scholar 

  22. M. Furusaka, Y. Ishikawa, S. Yamaguchi, and Y. Fujino, J. Phys. Soc. Jpn. 55:2253 (1986).

    Article  CAS  Google Scholar 

  23. A. Habencshuss, G. E. Ice, C. J. Sparks, and R. A. Neiser, Nucl. Inst. And Meth. Phys. Res. A266:215 (1988).

    Google Scholar 

  24. H. L. Yankel, Acta Cryst. B39:0 (1982).

    Google Scholar 

  25. J. L. Robertson, L. Reinhard, D. A. Neumann, and S. C. Moss, Mater. Res. Soc. Symp.Proc. 376:689 (1995).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Robertson, J.L., Sparks, C.J., Ice, G.E., Jiang, X., Moss, S.C., Reinhard, L. (2002). Local Atomic Arrangements in Binary Solid Solutions Studied by X-Ray and Neutron Diffuse Scattering from Single Crystals. In: Billinge, S.J.L., Thorpe, M.F. (eds) Local Structure from Diffraction. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47077-2_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-47077-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45827-9

  • Online ISBN: 978-0-306-47077-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics