Skip to main content

Three Introductory Talks on Matrix Models of Superstrings

  • Chapter
New Developments in Quantum Field Theory

Part of the book series: NATO Science Series: B: ((NSSB,volume 366))

  • 278 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D55:5112 (1997), hep-th/9610043.

    MathSciNet  ADS  Google Scholar 

  2. N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B498:467 (1997), hep-th/9612115.

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Fayyazuddin, Y. Makeenko, P. Olesen, D.J. Smith and K. Zarembo, Towards a non-perturbative formulation of IIB superstring by matrix models, Nucl. Phys. B499:159 (1997), hep-th/9703038.

    Article  MathSciNet  ADS  Google Scholar 

  4. V.A. Kazakov, Bilocal regularization of models of random surfaces, Phys. Lett. 150B:282 (1985).

    MathSciNet  ADS  Google Scholar 

  5. F. David, Planar diagrams, two-dimensional lattice gravity and surface models, Nucl. Phys. B257[FS14]:45 (1985).

    Article  ADS  Google Scholar 

  6. J. Ambjørn, B. Durhuus and J. Frölich, Diseases of triangulated random surfaces, and possible cures, Nucl. Phys. B257[FS14]:433 (1985).

    Article  ADS  Google Scholar 

  7. Y.M. Makeenko, Discretizing Superstring, Talk at QUARKS’96, Yaroslavl May 5–11, 1996, ITEP-TH-42/96 (September, 1996).

    Google Scholar 

  8. A. Miković and W. Siegel, Random superstrings, Phys. Lett. 240B:363 (1990).

    ADS  Google Scholar 

  9. L. Alvarez-Gaume et al., Superloop equations and two dimensional supergravity, Int. J. Mod. Phys. A7:5337 (1992), hep-th/9112018.

    MathSciNet  ADS  Google Scholar 

  10. J. Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75:4724 (1995), hep-th/9510017.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. K.S. Stelle, Lectures on supergravity p-branes, hep-th/9701088.

    Google Scholar 

  12. E. Witten, Bound states of strings and p-branes, Nucl. Phys. B460:335 (1995), hep-th/9510135.

    MathSciNet  ADS  Google Scholar 

  13. B. de Wit, J. Hoppe and H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B305[FS23]:545 (1988).

    Article  ADS  Google Scholar 

  14. B. de Wit, M. Luscher and H. Nicolai, The supermembrane is unstable, Nucl. Phys. B320:1 3 5 (1989).

    Google Scholar 

  15. O. Aharony and M. Berkooz, Membrane dynamics in M(atrix) theory, Nucl. Phys. B491:184 (1997), hep-th/9611215.

    Article  MathSciNet  ADS  Google Scholar 

  16. G. Lifschytz and S.D. Mathur, Supersymmetry and membrane interactions in M(atrix) theory, hep-th/9612087.

    Google Scholar 

  17. G. Lifschytz, Four-brane and six-brane interactions in M(atrix) theory, hep-th/9612223.

    Google Scholar 

  18. T. Banks, N. Seiberg and S. Shenker, Branes from matrices, Nucl. Phys. B490:91 (1997), hep-th/9612157.

    Article  MathSciNet  ADS  Google Scholar 

  19. I. Chepelev, Y. Makeenko and K. Zarembo, Properties of D-branes in matrix model of IIB superstring, Phys. Lett. B400:43 (1997), hep-th/9701151.

    MathSciNet  ADS  Google Scholar 

  20. A. Fayyazuddin and D.J. Smith, P-Brane solutions in IKKT IIB matrix theory, hep-th/9701168.

    Google Scholar 

  21. J. Polchinski, TASI lectures on D-branes, hep-th/9611050.

    Google Scholar 

  22. M.B. Green and M. Gutperle, Light-cone supersymmetry and D-branes, Nucl. Phys. B476:484 (1996), hep-th/9604091.

    Article  MathSciNet  ADS  Google Scholar 

  23. A.A. Tseytlin, On non-Abelian generalization of Born-Infeld action in string theory, hep-th/9701125.

    Google Scholar 

  24. C. Bachas, D-brane dynamics, Phys. Lett. B374:37 (1996), hep-th/9511043.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Makeenko, Y. (2002). Three Introductory Talks on Matrix Models of Superstrings. In: Damgaard, P.H., Jurkiewicz, J. (eds) New Developments in Quantum Field Theory. NATO Science Series: B:, vol 366. Springer, Boston, MA. https://doi.org/10.1007/0-306-47075-6_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-47075-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45816-3

  • Online ISBN: 978-0-306-47075-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics