Skip to main content

Resonance Energy Transfer

  • Chapter
Topics in Fluorescence Spectroscopy

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Förster, Intermolecular energy migration and fluorescence, Ann. Physik. (Leipzig) 2, 55–75 (1948). Translated by R. S. Knox.

    Google Scholar 

  2. T. Förster, Mechanism of energy transfer, in: Comprehensive Biochemistry (M. Florkin and E. H. Statz, eds., Vol. 22, pp. 61–77, Elsevier, New York (1967).

    Google Scholar 

  3. S. Latt, H. T. Cheung, and E. R. Blout, Energy transfer. A system with relatively fixed donor-acceptor separation, J. Am. Chem. Soc. 87, 995–1003 (1965).

    CAS  PubMed  Google Scholar 

  4. L. Stryer and R. P. Haugland, Energy transfer: A spectroscopic ruler, Proc. Natl. Acad. Sci. U.S.A. 58, 719–726 (1967).

    CAS  PubMed  Google Scholar 

  5. H. Buecher, K. H. Drexhage, M. Fleck, H. Kuhn, D. Mobius, F. Schafer, J. Sondermann, W. Sperling, P. Tillmann, and J. Weigand, Controlled transfer of excitation energy through thin layers, Mol. Cryst. 2, 199–230 (1967).

    CAS  Google Scholar 

  6. R. P. Haugland, G. J. Yguerabide, and L. Stryer, Dependence of the kinetics of singlet-singlet energy transfer on the spectral overlap integral, Proc. Natl. Acad. Sci. U.S.A. 63, 23–30 (1969).

    CAS  Google Scholar 

  7. P. Schiller, Intermolecular distances: Energy transfer in: Biochemical Fluorescence: Concepts (R. F. Chen and H. Edelhoch), eds., Vol. 1, pp. 285–303, Marcel Dekker, New York (1975).

    Google Scholar 

  8. H. C. Cheung, F. Gonsoulin, and F. Garland, Fluorescence energy transfer studies on the proximity of the two essential thiols of myosin subfragmcnt-1, J. Biol. Chem. 258, 5775–5786 (1983).

    CAS  PubMed  Google Scholar 

  9. R. E. Dale and J. Eisinger, Polarized excitation energy transfer, in: Biochemical Fluorescence: Concepts (R. F. Chen and H. Edelhoch), eds., Vol. 1, pp. 115–284, Marcel Dekker, New York (1975).

    Google Scholar 

  10. R. E. Dale, J. Eisinger, and W. E. Blumberg, The orientation freedom of molecular probes, Biophys. J. 26, 161–193 (1979).

    CAS  PubMed  Google Scholar 

  11. E. E. Haas, E. Katchalsky-Katzir, and I. Z. Steinberg, Effect of the orientation of donor and acceptor on the probability of energy transfer involving electronic transitions of mixed polarizations, Biochemistry 17, 5064–5070 (1978).

    CAS  PubMed  Google Scholar 

  12. H. R. Trayer and I. P. Trayer, Fluorescence energy transfer between the myosin subfragment-1 isoenzymes and F-actin in the absence and presence of nucleotides, Eur. J. Biochem. 135, 47–59 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. W. D. Horrocks, Jr., B. Holmquist, and B. L. Vallee, Energy transfer between terbium (III) and cobalt (II) in thermolysin: A new class of metal-metal distance probes, Proc. Natl. Acad. Sci. U.S.A. 72, 4764–4768 (1975).

    CAS  Google Scholar 

  14. P. M. Tongerson and M. F. Morales, Application of the Dale-Eisinger analysis to proximity mapping in the contractile system, Proc. Natl. Acad. Sci. U.S.A. 81, 3723–3727 (1984).

    Google Scholar 

  15. R. E. Jones, Nanosecond fluorimetry, Ph.D. thesis, Stanford University (1970).

    Google Scholar 

  16. Z Hillel and C.-W. Wu, Statistical interpretation of fluorescence energy transfer measurements in macromolecular systems, Biochemistry 15, 2105–2113 (1976).

    Article  CAS  PubMed  Google Scholar 

  17. H. C. Cheung and M. F. Morales, Studies of myosin conformation by fluorescent techniques, Biochemistry 8, 2177–2182 (1969).

    Article  CAS  PubMed  Google Scholar 

  18. H. C. Cheung, Conformation of myosin: Effects of substrate and modifiers, Biochim. Biophys. Acta 194, 478–485 (1969).

    CAS  PubMed  Google Scholar 

  19. R. E. Dalbey, J. Weiel, and R. G. Yount, Förster energy transfer measurements of thiol 1 to thiol 2 distances in myosin subfragment-1, Biochemistry 22, 4696–4706 (1983).

    CAS  PubMed  Google Scholar 

  20. H. C. Cheung, F. Gonsoulin, and F. Garland, An investigation of the SH 1 -SH 2 and SH 1 -ATPase distances in myosin subfragment-1 by resonance energy transfer using nanosecond fluorimetry, Biochim. Biophys. Acta 832, 52–62 (1985).

    CAS  PubMed  Google Scholar 

  21. K. E. Thames, H. C. Cheung, and S. C. Harvey, Binding of 1, N6-ethenoadenosine tri-phosphate to actin, Biochem. Biophys. Res. Commun. 60, 1252–1261 (1974).

    Article  CAS  PubMed  Google Scholar 

  22. H. C. Cheung and B. M. Liu, Distance between nucleotide site and cysteine-373 by resonance energy transfer measurements, J. Muscle Res. Cell Motil. 5, 65–80 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. J. Bolts, R. Takashi, P. Torgerson, T. Hozumi, A. Muhlrad, D. Mornet, and M. F. Morales, On the mechanism of energy transduction in myosin subfragment-1, Proc. Natl. Acad. Sci. U.S.A. 81, 2060–2064 (1984).

    Google Scholar 

  24. D. J. Moss and D. R. Trentham, Distance measurement between the active site and cysteine-177 of the alkali one light chain of subfragment-1 from rabbit skeletal muscle, Biochemistry 22, 5261–5270 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. T. Tao and M. Lamkin, Excitation energy transfer studies on the proximity between SH 1 and the adenosinetriphosphatase site in myosin subfragment-1, Biochemistry 20, 5051–5055 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. J. Perkins, J. A. Weiel, J. Grammer, and R. G. Yount, Introduction of a donor-acceptor pair by a single protein modification, J. Biol. Chem. 259, 8786–8793 (1984).

    CAS  PubMed  Google Scholar 

  27. D. J. Marsh and S. Lowey, Fluorescence energy transfer in myosin subfragment-1, Biochemistry 19, 774–784 (1980).

    CAS  PubMed  Google Scholar 

  28. R. Takashi, A. Muhlrad, and J. Botts, Spatial relationship between a fast-reacting thiol and a reactive lysine residue of myosin subfragment-1, Biochemistry 21, 5661–5668 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. R. Takashi, P. Torgerson, and J. Duke, Proximity of LC3, thiol to the reactive lysine of myosin heavy chain, Biophys. J. 45 (2, Part 2), 223 (Abstract) (1984).

    Google Scholar 

  30. R. Takashi, Fluorescence energy transfer between subfragment-1 and actin in the rigor complex of actosubfragment-1, Biochemistry 23, 5164–5169 (1979).

    Google Scholar 

  31. T. Arata, Structure of the actin-myosin complex produced by crosslinking in the presence of ATP, J. Mol. Biol. 191, 107–116 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. M. Miki and P. Wahl, Fluorescence energy transfer in labeled G-actin and F-actin, Biochim. Biophys. Ada 786, 188–196 (1984).

    CAS  Google Scholar 

  33. D. G. Bhandari, H. R. Trayer, and I. P. Tray, Resonance energy transfer evidence for two attached states of the actomyosin complex, FEBS Lett. 187, 160–166 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. C. G. dos Remedios and R. Cooke, Fluorescence energy transfer between probes on actin and probes on myosin, Biochim. Biophys. Ada 788, 193–205 (1984).

    Google Scholar 

  35. M. Miki, J. A. Barden, and C. G. dos Remedios, Fluorescence resonance energy transfer between the nucleotide binding site and Cys-10 in G-actin and F-actin, Biochim. Biophys. Ada 872, 76–82 (1986).

    CAS  Google Scholar 

  36. R. Aguirre, S. S. Lin, F. Gonsoulin, C. K. Wang, and H. C. Cheung, Characterization of the ethenoadenosine diphosphate-binding site of myosin subfragment 1. Energetics of the equilibrium between two states of nucleotide-S1 and vanadate-induced global conformation changes detected by energy transfer, Biochemistry 28, 799–807 (1988).

    Google Scholar 

  37. R. Takashi and A. A. Kasprazk, Measurement of interprobe distances in the acto-subfragment 1 rigor complex, Biochemistry 26, 7471–7477 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. D. L. Taylor, J. Reidler, J. A. Spudich, and L. Stryer, Detection of actin assembly by fluorescence energy transfer, J. Cell Biol. 89, 362–367 (1981).

    Article  CAS  PubMed  Google Scholar 

  39. M. Miki, J. A. Barden, B. D. Hambly, and C. G. dos Remedios, Fluorescence energy transfer between Cys-10 residues in F-actin filaments, Biochem. Int. 12, 725–731 (1986).

    CAS  PubMed  Google Scholar 

  40. M. Miki, B. D. Hambly, and C. G. dos Remedios, Fluorescence energy transfer between nucleotide binding sites in F-actin filament, Biochim. Biophys. Ada 871, 137–141 (1986).

    CAS  Google Scholar 

  41. A. A. Kasprzak, R. Takashi, and M. F. Morales, Orientation of actin monomer in the F-actin filament: Radial coordinate of glutamine-41 and effect of myosin subfragment 1 binding on the monomer orientation, Biochemistry 27, 4512–4522 (1988).

    CAS  PubMed  Google Scholar 

  42. A. D. Saad, J. D. Pardee, and D. A. Fischman, Dynamic exchange of myosin molecules between thick filaments, Proc. Natl. Acad. Sci. U.S.A. 83, 9483–9487 (1986).

    CAS  Google Scholar 

  43. C. K. Wang and H. C. Cheung, Proximity relationship in the binary complex formed between troponin I and troponin C, J. Mol. Biol. 191, 509–521 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. T. Tao, G. Strasburg, E. Gowell, and P. C. Leavis, Excitation energy transfer measurements of the distance between Cys-98 of TnC and Cys-133 of TnI in reconstituted rabbit skeletal troponin, Biophys. J. 47, (2, Part 2) 509 (Abstract) (1985).

    Google Scholar 

  45. O. Herzberg and M. N. G. James, Structure of the calcium regulatory muscle protein troponin-C at 2.8 Å resolution, Nature 313, 653–659 (1985).

    Article  CAS  PubMed  Google Scholar 

  46. H. C. Cheung, C. K. Wang, and F. Garland, Fluorescence energy transfer studies of skeletal troponin C: Proximity between methionine-25 and cysteine-98, Biochemistry 21, 2135–2142 (1982).

    Google Scholar 

  47. C. K. Wang and H. C. Cheung, Effect of pH on the distance between Met-25 and Cys-98 of troponin C, Biochemistry 24, 3364 (Abstract) (1985).

    Google Scholar 

  48. C. K. Wang, J. Lebowitz, and H. C. Cheung, Acid dimerization of skeletal troponin C Proteins: Structure, Function and Genetics 6, 424–430 (1989).

    CAS  Google Scholar 

  49. K.-H. Huang, R. H. Fairclough, and C. R. Cantor, Singlet energy transfer studies of the arrangement of proteins in the 30S Escherichia coli ribosome, J. Mol. Biol. 97, 443–470 (1975).

    CAS  PubMed  Google Scholar 

  50. J. A. Langer, D. M. Engelman, and P. B. Moore, Neutron-scattering studies of the ribosome of Escherichia coli: A provisional map of the locations of S3, S4, S5, S7, S8, and S9 in the 30S subunit, J. Mol. Biol. 119, 463–485 (1978).

    Article  CAS  PubMed  Google Scholar 

  51. W. Rychlik, W. Odom, and B. Hardesty, Localization of the elongation factor Tu binding site on Escherichia coli ribosomes, Biochemistry 22, 85–93 (1983).

    Article  CAS  PubMed  Google Scholar 

  52. O. W. Odom, E. R. Dabbs, C. Dionne, M. Muller, and B. Hardesty, The distance between S1, S2, and the 3′ end of 16S RNA in the 30S ribosomal subunits, Eur. J. Biochem. 142, 261–267 (1984).

    Article  CAS  PubMed  Google Scholar 

  53. K. B. Steinhauser, P. Wooley, J. Dijk, and B. Epe, Distance measurement by energy transfer. Ribosomal proteins L6, L10, and L11 of Escherichia coli, Eur. J. Biochem. 156, 497–503 (1986).

    Google Scholar 

  54. H.-Y. Deng, O. W. Odom, and B. Hardesty, Localization of L11 on the Escherichia coli ribosome by singlet-singlet energy transfer, Eur. J. Biochem. 156, 497–503 (1986).

    Article  CAS  PubMed  Google Scholar 

  55. M. J. Rhee, D. R. Sudnick, V. K. Arkle, and W. D. Horrocks, Jr., Lanthanide ion luminescence probes. Characterization of metal ion binding sites and intermetal energy transfer distance measurements in calcium-binding proteins. 1. Parvalbumin, Biochemistry 20, 3328–3334 (1980).

    Google Scholar 

  56. A. P. Snyder, D. R. Sudnick, V. K. Arkle, and W. D. Horrocks, Jr., Lanthanide ion luminescence probes. Characterization of metal ion binding sites and intermetal energy transfer distance measurements in calcium binding proteins. 2. Thermolysin, Biochemistry 20, 3334–3339 (1980).

    Google Scholar 

  57. C.-L. A. Wang, T. Tao, and J. Gergely, The distance between the high affinity sites of troponin C measured by interlanthanide ion energy transfer, J. Biol. Chem. 257, 8372–8375 (1982).

    CAS  PubMed  Google Scholar 

  58. P. Mulqueen, J. M. Tingey, and W. D. Horrocks, Jr., Characterization of lanthanide (III) ion binding to calmodulin using luminescence spectroscopy. Biochemistry 24, 6639–6645 (1985).

    Article  CAS  PubMed  Google Scholar 

  59. C.-L. A. Wang, Distance measurements between metal-binding sites of calmodulin and from these sites to cys-133 of troponin I in the binary complex, J. Biol. Chem. 261, 11106–11109 (1986).

    CAS  PubMed  Google Scholar 

  60. R. H. Kretsinger and C. E. Nockholds, Carp muscle calcium-binding protein. II. Structure determination and general description, J. Biol. Chem. 248, 3313–3326 (1973).

    CAS  PubMed  Google Scholar 

  61. B. W. Mathews, L. H. Weaver, and W. R. Kester, The conformation of thermolysin, J. Biol. Chem. 249, 8039–8044 (1974).

    Google Scholar 

  62. Y. S. Babu, private communication.

    Google Scholar 

  63. O. Herzberg and M. N. G. James, Crystallography determination of lanthanide ion binding to troponin C, FEBS Lett. 199, 279–282 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. L. Stryer, D. D. Thomas, and C. F. Mears, Diffusion-enhanced fluorescence energy transfer, Annu. Rev. Biophys. Bioeng. 11, 203–222 (1982).

    Article  CAS  PubMed  Google Scholar 

  65. R. F. Steiner and M. Motevalli-Alibadi, The determination of the separation of tyrosine-99 and tyrosine-138 in calmodulin: Radiationless energy transfer, Arch. Biochem. Biophys. 234, 522–530 (1984).

    Article  CAS  PubMed  Google Scholar 

  66. R. A. Borkman and S. R. Phillips, Tyrosine-to-tryptophan energy transfer and the structure of calf gamma-II crystallin, Exp. Eye Res. 40, 819–826 (1985).

    Article  CAS  PubMed  Google Scholar 

  67. M. C. Fournie-Zaluski, J. Belleney, B. Lux, C. Durieux, D. Gerard, G. Gacel, B. Maigret, and B. P. Roques, Conformational analysis of cholecystokinin CCK 26–33 and related fragments by 1H NMR spectroscopy, fluorescence-transfer measurements, and calculations, Biochemistry 25, 3778–3787 (1986).

    Article  CAS  PubMed  Google Scholar 

  68. C. A. McWheter, E. Haas, A. R. Leed, and H. A. Scheraga, Conformational unfolding in the N-terminal region of ribonuclease A detected by nonradiative energy transfer, Biochemistry 25, 1951–1963 (1986).

    Google Scholar 

  69. A. B. Dobrovol’sky, N. B. Gusev, and P. Freidrich, Crosslinking of troponin complex with 1, 3-difluoro-4, 6-dinitrobenzene, Biochim, Biophys. Ada 789, 144–151 (1984).

    Google Scholar 

  70. C.-K. Wang and H. C. Cheung, Energetics of the binding of calcium and troponin I to troponin C from rabbit skeletal muscle, Biophys. J. 48, 727–739 (1985).

    CAS  PubMed  Google Scholar 

  71. S. A. Latt, D. S. Auld, and B. L. Vallee, Distance measurements at the active site of carboxypeptidase A during catalysis, Biochemistry 11, 3015–3021 (1972).

    Article  CAS  PubMed  Google Scholar 

  72. R. R. Lobb and D. S. Auld, Stopped-flow radiationless energy transfer kinetics: Direct observation of enzyme-substrate complex at steady state, Biochemistry 19, 5297–5302 (1980).

    Article  CAS  PubMed  Google Scholar 

  73. R. R. Lobb and D. S. Auld, Determination of enzyme mechanisms by radiationless energy transfer kinetics, Proc. Natl. Acad. Sci. U.S.A. 76, 2684–2688 (1979).

    CAS  Google Scholar 

  74. A. C. Williams and D. S. Auld, Kinetic analysis of stopped-flow radiationless energy transfer studies: Effect of anions on the activity of carboxypeptidase A, Biochemistry 25, 94–100 (1986).

    CAS  PubMed  Google Scholar 

  75. F. Garland, F. Gonsoulin, and H. C. Cheung, The MgADP-induced decrease of the SH 1 -SH 2 fluorescence resonance energy distance of myosin subfragment 1 occurs in two kinetic steps, J. Biol. Chem. 263, 11621–11623 (1988).

    CAS  PubMed  Google Scholar 

  76. F. Garland and H. C. Cheung, Fluorescence stopped-flow study of the mechanism of nucleotide binding to myosin subfragment 1, Biochemistry 18, 5281–5289 (1979).

    Article  CAS  PubMed  Google Scholar 

  77. H. Paulsen and W. Wintermeyer, tRNA topography during translocation: Steady and kinetic fluorescence energy-transfer studies, Biochemistry 25, 2749–2756 (1986).

    Article  CAS  PubMed  Google Scholar 

  78. H. Paulsen, J. M. Robertson, and W. Wintermeyer, Topographical arrangement of two transfer RNAs on the ribosome. Fluorescence transfer measurements between A and P site-bound tRNAs, J. Mol. Biol. 167, 411–426 (1983).

    CAS  PubMed  Google Scholar 

  79. H. J. Rheinberger and K. H. Nierhaus, Testing an alternative model for the ribosomal peptide elongation cycle, Proc. Natl. Acad. Sci. U.S.A. 80, 4215–4217 (1983).

    Google Scholar 

  80. C. R. Cantor and P. Pochukas, Determination of distance distribution functions by singlet-singlet energy transfer, Proc. Natl. Acad. Sci. U.S.A. 68, 2099–2101 (1971).

    CAS  Google Scholar 

  81. A. Grinvald, E. Haas, and I. Z. Steinberg, Evaluation of the distribution of distances between energy donors and acceptors by fluorescence decay, Proc. Natl. Acad. Sci. U.S.A. 69, 2273–2277 (1972).

    CAS  Google Scholar 

  82. E. Haas, M. Wilchek, E. Katchalski-Katzir, and I. Z. Steinberg, Distribution of end-to-end distances of oligopeptides in solution as estimated by energy transfer, Proc. Natl. Acad. Sci. U.S.A. 72, 1807–1811 (1975).

    CAS  PubMed  Google Scholar 

  83. E. Haas, E. Katchalski-Katzir, and I. Z. Steinberg, Brownian motion of the ends of oligopeptide chains in solution estimated by energy transfer between the chain ends, Biopolymers 17, 11–31 (1978).

    Article  CAS  Google Scholar 

  84. J. R. Lakowicz, M. L. Johnson, W. Wiczk, and R. F. Steiner, Resolution of a distribution of distances by fluorescence energy transfer and frequency-domain fluorometry, Chem. Phys. Lett. 138, 587–593 (1987).

    Article  CAS  Google Scholar 

  85. I. Gryczynski, W. Wiczk, M. L. Johnson, and J. R. Lakowicz, Resolution of end-to-end distance distributions of flexible molecules using quenching-induced variations of the Förster distance for fluorescence energy transfer, Biophys. J. 54, 577–586 (1988).

    CAS  PubMed  Google Scholar 

  86. J. R. Lakowicz, I. Gryczynski, H. C. Cheung, C.-K. Wang, and M. L. Johnson, Distance distributions in native and random coil troponin I from frequency-domain measurements of fluorescence energy transfer, Biopolymers 27, 821–830 (1988).

    Article  CAS  PubMed  Google Scholar 

  87. C.-K. Wang, l. Johnson, T. Ruggiero, D. Harris, and H. C. Cheung, Time-resolved fluorescence anisotropy decay or the tryptophan of skeletal troponin I and its complex with troponin C, Biophys. J. 47 (2. Part 2), 472 (Abstract) (1985).

    Google Scholar 

  88. J. R. Lakowicz, I. Gryczynski, H. C. Cheung, C.-K. Wang, M. L. Johnson, and N. Joshi, Distance distributions in proteins recovered using frequency-domain fluorometry; application to troponin I and its complex with troponin C, Biochemistry 27, 9149–9160 (1988).

    Article  CAS  PubMed  Google Scholar 

  89. H. C. Cheung, C.-K. Wang, I. Gryczynski, W. Wiczk, G. Laczko, M. L. Johnson, and J. R. Lakowicz, Distance distributions and anisotropy decays of troponin C and its complex with troponin I, Biochemistry 30, 5238–5247 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. H. C. Cheung, I. Gryczynski, H. Malak, W. Wiczk, M. L. Johnson, and J. R. Johnson, Conformational flexibility of the Cys-697-Cys-707 segment of myosin subfragment-l: distance distributions by frequency-domain fluorometry, Biophys. Chem. 40, 1–17 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. D. Amir and E. Haas, Estimation of intramolecular distance distributions in bovine pancreatic trypsin inhibitor by site-specific labeling and nonradiative excitation energy-transfer measurements, Biochemistry 26, 2162–2175 (1987).

    Article  CAS  PubMed  Google Scholar 

  92. E. Haas, C. A. McWherter, and H. A. Scheraga, Conformational unfolding in the N-terminal region of ribonuclease A detected by nonradiative energy transfer: Distribution of interresidue distances in the native, denatured, and reduced-denaturated states, Biopolymers 27, 1–21 (1988).

    Article  CAS  PubMed  Google Scholar 

  93. P. G. Wu, E. James, and L. Brand, Thermal unfolding of a staphylococcal nuclease mutant as determined by changes in distance distribution from fluorescence energy transfer measurements, Biophys. J. 59 (2, Part 2), 39 abs. (1991).

    Google Scholar 

  94. E. James, P. G. Wu, and L. Brand, Changes in distance distribution of a staphylococcal nuclease mutant during guanidinium unfolding as determined by fluorescence energy transfer, Biophys. J. 59 (2, Part 2) 360 abs. (1991).

    Google Scholar 

  95. D. Shortle and A. K. Meeker, Residual structure in large fragments of staphylococcal nuclease: Effects of amino acid substitutions, Biochemistry 28, 936–944 (1989).

    Article  CAS  PubMed  Google Scholar 

  96. E. Haas and I. Z. Steinberg, Intramolecular dynamics of chain molecules monitored by fluctuations in efficiency of excitation energy transfer, Biophys. J. 46, 429–437 (1984).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cheung, H.C. (2002). Resonance Energy Transfer. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 2. Springer, Boston, MA. https://doi.org/10.1007/0-306-47058-6_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-47058-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43875-2

  • Online ISBN: 978-0-306-47058-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics