Skip to main content
  • 847 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. P. Tsividis, Operation and Modeling of the MOS Transistor, McGraw-Hill, New York, 1987.

    Google Scholar 

  2. J. Meyer, “MOS models and circuit simulation”, RVA Review, vol. 32, pp. 42–63 (1971).

    Google Scholar 

  3. N. Arora, MOSFET Models for VLSI Circuit Simulation, Springer-Verlag, Wien New York, 1994

    Google Scholar 

  4. S. Liu and L. W. Nagel, “Small-signal MOSFET models for analog circuit design,” IEEE J. Solid-state Circuits, vol. SC-17, pp. 983–998, 1982.

    Google Scholar 

  5. L. W. Nagel, SPICE2: A computer program to simulate semiconductor circuits, ERL-M520, Electronics Research Laboratory, University of California, Berkeley, 1975.

    Google Scholar 

  6. M. A. Cirit, “The Meyer model revisited: Why is charge not conserved,” IEEE Trans. on Computer-aided Design, vol. 8, pp. 1033–1037, 1989.

    Google Scholar 

  7. D. E. Ward and R. W. Dutton, “A charge oriented model for MOS transistor capacitances,” IEEE J. Solid-state Circuits, vol. SC-13, pp. 703–707, 1978.

    Google Scholar 

  8. P. Yang et al., “An investigation of the charge conversation problem for MOSFET circuit simulation,” IEEE J. Solid-state Circuits, vol. SC-18, pp. 128–138, 1983.

    Google Scholar 

  9. K. A. Sakallah et al., “The Meyer model revisited: Explaining and correcting the charge non-conservation problem,” in ICCAD-87, Dig. Tech. 1987.

    Google Scholar 

  10. B. J. Sheu et al., “An MOS transistor charge model for VLSI design,” IEEE Trans. on Computer-aided Design, vol. 7, pp. 520–527, 1988.

    Google Scholar 

  11. K. A. Sakalllah et al., “A first-order charge conserving MOS capacitance model,” IEEE Trans. on Computer-aided Design, vol. 9, pp. 99–108, 1990.

    Google Scholar 

  12. C. Turchetti et al., “A Meyer-like approach for the transient analysis of digital MOS IC’s,” IEEE Trans. on Computer-aided Design, vol. 5, pp. 490–507, 1986.

    Google Scholar 

  13. B. J. Sheu et al., “A compact IGFET charge model,” IEEE Trans. on Circuits and Systems, vol. CAS-31, pp. 745–748, 1984.

    Google Scholar 

  14. B. J. Sheu, et al., Compact short channel IGFET model (CSIM), Electronics Res. Lab, M84/20, University of California, Berkeley, 1984.

    Google Scholar 

  15. D. E. Ward, Charge-based modeling of capacitance in MOS transistors, Stanford Electronics Laboratory, Tech. G201-11, Stanford University, CA., 1981.

    Google Scholar 

  16. B. J. Sheu et al., “BSIM-Berkeley short channel IGFET model for MOS transistors,” IEEE J. Solid-state Circuits, vol. SC-22, pp. 558–565, 1987.

    MathSciNet  Google Scholar 

  17. Y. Cheng et al., BSIM3 version 3.1 User’s Manual, University of California, Berkeley, Memorandum No. UCB/ERL M97/2, 1997.

    Google Scholar 

  18. R. Shrivastava and K. Fitzpatrick, “A simple model for the overlap capacitance of a VLSI MOS device,” IEEE Trans. on Electron Devices, vol. ED-29, pp. 1870–1875, 1982.

    Google Scholar 

  19. Y. Cheng et al., “A unified MOSFET channel charge model for device modeling in circuit simulation,” IEEE Trans. Computer-aided Design of Integrated Circuits and Systems, vol. 17, pp. 641–644, 1998.

    Google Scholar 

  20. P. Klein et al, “Short channel charge LDD-MOSFET model for analog and digital circuits with low overdrive voltage,” IEEE 1995 Custom Integrated Circuit Conference, pp. 229–232, 1995.

    Google Scholar 

  21. M. Miura-Mattausch, U. Feldmann, A. Rahm, M. Bollu, and D. Savignac, “Unified complete MOSFET model for analysis of digital and analog circuits,” IEEE Trans. CAD of Integrated Circuis. and Systems vol. 15, pp. 1–7, 1996.

    Google Scholar 

  22. K. M. Rho, K. Lee, M. Shur, and T. A. Fjeldly, “Unified quasi-static MOSFET capacitance model,” IEEE Trans. Electron Devices, vol. 40, pp. 131–136, 1990.

    Google Scholar 

  23. W. Liu et al., BSIM3 version 3.2 User’s Manual, University of California, Berkeley, 1998.

    Google Scholar 

  24. Y. Cheng et al., “ICM—An analytical Inversion charge model for accurate modeling of thin gate oxide MOSFETs,” 1997 International Conference on Simulation of Semiconductor Processes and Devices, Sept. 1997, Boston.

    Google Scholar 

  25. R. Rios, N. D. Arora, C.-L. Huang, N. Khalil, J. Faricelli, and L. Gruber, “A physical compact MOSFET model, including quantum mechanical effects, for statistical circuit design applications,” IEDM Tech. Dig., pp. 937–940, 1995.

    Google Scholar 

  26. S. A. Hareland, S. Krishnamurthy, S. Jallepalli, C.-F. Yeap, K. Hasnat, A. F. Tasch, Jr., and C. M. Maziar, “A computationally efficient model for inversion layer quantization effects in deep submicron n-channel MOSFET’s,” IEDM Tech. Dig., pp. 933.936, 1995.

    Google Scholar 

  27. S. A. Hareland, S. Krishnamurthy, S. Jallepalli, C.-F. Yeap, K. Hasnat, Al F. Tasch, Jr., and C. M. Maziar, “A computationally efficient model for inversion layer quantization effects in deep submicron n-channel MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 90–96, 1996.

    Article  Google Scholar 

  28. J. H. Huang et al., BSIM3 Manual (Version 2.0), University of California, Berkeley, March 1994.

    Google Scholar 

  29. K. F. Schuegraf, C. C. King, and C. Hu, “Impact of polysilicon depletion in thin oxide MOS technology,” Proc. 1993 Int. Symp. VLSI Tech., Sys. and Appl. (VLSI-TSA), Taiwan pp. 86–90, 1993.

    Google Scholar 

  30. Y. King et al., “AC charge centroid model for quantization of inversion layer in NMOSFET,” Int. Symp. VLSI Technology, Systems and Applications, Proc. of Tech. Papers, Taipei, Taiwan, pp. 245–249, June 1997.

    Google Scholar 

  31. W. Liu et al., An accurate MOSFET intrinsic capacitance model considering quantum mechanic effect for BSIM3v3.2, Memorandum No. UCB/ERL M98/47, University of California, Berkeley, 1998.

    Google Scholar 

  32. P. Yang, “Capacitance modeling for MOSFETs,” in Advances in CAD for VLSI, vol. 3 pt.I, A. E. Ruehli, Ed. Amsterdam, The Netherlands: North Holland, pp. 107–130, 1986.

    Google Scholar 

  33. K. K. Ng and J. R. Brews, “Measuring the effective channel length of MOSFETs,” IEEE Circuit and Devices, vol. 6, pp. 33–38, 1990

    Google Scholar 

  34. C. Enz and Y. Cheng, “MOS transistor modeling issues for rf ic design”, Workshop of Advances in Analog Circuit Design, France, March 1999.

    Google Scholar 

  35. N. D. Arora, “Modeling submicron MOSFET transistor capacitances,” Meta-Software Journal, pp. 11–13, Dec. 1994.

    Google Scholar 

  36. J. S. T. Huang, J. W. Schrankler, et al., “Flat-band voltage dependence on channel length in short channel threshold model,” IEEE Trans. on Electron Devices, vol. ED-32, pp. 1001–1002, 1985.

    Google Scholar 

  37. B. J. Sheu and P. K. Ko, “A capacitance method to determine channel length for conventional and LDD MOSFETs,” IEEE Electron Device Letters, vol. EDL-5, p. 491, 1984.

    Google Scholar 

  38. Y. Cheng et al., “RF modeling issues of deep-submicron MOSFETs for circuit design,” 1998 International Conference on Solid-state and Integrated Circuit Technology, pp. 416–419, 1998.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Capacitance Model. In: Mosfet Modeling & BSIM3 User’s Guide. Springer, Boston, MA. https://doi.org/10.1007/0-306-47050-0_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47050-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8575-2

  • Online ISBN: 978-0-306-47050-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics