Skip to main content

Reliability and Yield Improvement

  • Chapter
Cmos Memory Circuits
  • 546 Accesses

Abstract

Reliability greatly effects the application area, environments, and costs, while yield strongly influences the manufacturing costs of CMOS memories. Both the reliability and yield of CMOS memories can highly be enhanced, in addition to various circuit and process technological approaches, by implementations of circuit redundancies. For CMOS memory circuits the issues; how redundancy effects reliability and yield, what the principal noises, failures, faults and errors are, what methods can be applied to control noises, reduce failures, repair faults and correct errors, how much redundancy is needed, and how to obtain fault-tolerance by fault-repair and error control code implementations, are described in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. K. Sharma, Semiconductor Memories, Technology, Testing and Reliability, IEEE Press, pp. 249–320, 1997.

    Google Scholar 

  2. A. Reibman, R. M Smith, and K. S. Trivedi, “Markov and Markov Reward Model Transient Analysis: An Overview of Numerical Approaches,” European Journal of Operation Ressearch, North-Holland, pp. 256–267, 1989.

    Google Scholar 

  3. C. Hu, “IC Reliability Simulation,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 3, pp. 241–246, March 1992.

    Article  ISI  Google Scholar 

  4. F. A. Applegate, “A Commentary on Redundancy,” General Electric, Technical Publiations, Spartan, 1962.

    Google Scholar 

  5. K. S. Trivedi, “Probability and Statistics with Reliability, Queueing, and Computer Science Applications,” Prentice Hall, 1982.

    Google Scholar 

  6. A. Goyal et al., “The System Availability Estimator,” Proceedings 16th International Symposium on Fault Tolerant Computing,” CS Press, pp. 84–89, July 1986.

    Google Scholar 

  7. P. A. Layman and S. G. Chamberlain, “A Compact Thermal Noise Model for the Investigation of Soft Error Rates in MOS VLSI Digital Circuits,” IEEE Journal of Solid-State Circuits. Vol. 24, No. 1, pp. 78–89, February 1989.

    Article  Google Scholar 

  8. T. C. May and M. H. Woods, “A New Physical Mechanisms for Soft Errors in Dynamic Memories,” Proceedings Reliability Physics Symposium, pp. 2–9, April 1978.

    Google Scholar 

  9. D. Binder, C. E. Smith, and A. B. Holman, “Satellite Anomalies from Galactic Cosmic Rays,” IEEE Transactions on Nuclear Science, NS-22, No. 6, pp. 2675–2680, December 1975.

    Google Scholar 

  10. E. J. Kobetich and R. Katz, “Energy Deposition by Electron Beams and Delta Rays,” Physics Review, No. 170, pp. 391–396, 1968.

    Google Scholar 

  11. J. C. Pickel and J. T. Blandford, “Cosmic-Ray-Induced Errors in MOS Memory Cells,” IEEE Annual Conference on Nuclear and Space Radiation Effects, Albuquerque, New Mexico, Rockwell Technical Information No. X78-317/501, July 1978.

    Google Scholar 

  12. L. C. Northcliffe and R. F Schilling, “Nuclear Data,” A7, Academic Press, 1970.

    Google Scholar 

  13. T. L. Turtlinger and M. V. Davey, “Understanding Single Event Phenomena in Complex Analog and Digital Integrated Circuits,” IEEE Transactions on Nuclear Science, Vol. 37, No. 6, December 1990.

    Google Scholar 

  14. T. Toyabe and T. Shinada, “A Soft-Error Rate Model for MOS Dynamic RAMs,” IEEE Journal of Solid-State Circuits, Vol. SC-17, pp. 362–367, April 1982.

    Google Scholar 

  15. E. Diehl et al., “Error Analysis and Prevention of Cosmic Ion-Induced Soft Errors in CMOS Static RAMs,” IEEE Transactions on Nuclear Science, NS-29, pp. 1963–1971, 1982.

    Google Scholar 

  16. R. J. MacPartland, “Circuit Simulations of Alpha-Particle-Induced Soft Errors in MOS Dynamic RAMs,” IEEE Journal of Solid State Circuits, Vol. SC-16, No. 1, pp. 31–34, February 1981.

    Google Scholar 

  17. C. Stapper, A. McLaren, and M. Dreckman, “Yield model for Productivity Optimization of VLSI Memory Chips with Redundancy and Partially Good Product,” IBM Journal of Research and Development, Vol. 24, No. 3, pp. 398–409, May 1980.

    Article  ISI  Google Scholar 

  18. D. Moore and H. Walker, “Yield Simulation for Integrated Circuits,” Kluwer Academic, 1987.

    Google Scholar 

  19. J. Wallmark, “Design Considerations for Integrted Electronic Devices,” Proceedings of the IRE, Vol. 48, No. 3, pp. 293–300, March 1960.

    Google Scholar 

  20. R. Petritz, “Current Status of Large Scale Integration Technology,” IEEE Journal of Solid State Circuits, Vol. 4, No. 2, pp. 130–147, December 1967.

    Google Scholar 

  21. J. Price, “A New Look at Yield of Integrated Circuits,” Proceedings of the IEEE, Vol. 58, No. 8, pp. 1290–1291, August 1970.

    Google Scholar 

  22. B. Murphy, “Cost-Size Optima of Monolithic Integrated Circuits,” Proceedings of the IEEE, Vol. 52, No. 12, pp. 1537–1545, December 1964.

    Article  ISI  MathSciNet  Google Scholar 

  23. S. Hu, “Some Considerations in the Formulation of IC Yield Statistics,” Solid-State Electronics, Vol. 22, No. 2, pp. 205–211, February 1979.

    Article  ISI  Google Scholar 

  24. B. Murphy, Comments on “A New Look at Yield of Integrated Circuits,” Proceedings of the IEEE, Vol. 59, No. 8, pp. 1128–1132, July 1971.

    Google Scholar 

  25. V. Borisov, “A Probability Method for Estimating the Effectiveness of Redundancy in Semiconductor Memory Structures,” Microelectronika, Vol. 8, No. 3, pp. 280–282, May-June 1979.

    MathSciNet  Google Scholar 

  26. T. Okabe, M. Nagata and S. Shimada, “Analysis on Yield of Integrated Circuits and New Expression for the Yield,” Electrical Engineering in Japan, No. 92, pp. 135–141, December 1972.

    Google Scholar 

  27. W. Maly, “Modeling of Point Defect Related Yield Losses for CAD of VLSI Circuits,” IEEE International Conference on Computer-Aided Design, Digest of Technical Papers, pp. 161–163, November 1984.

    Google Scholar 

  28. C. H. Stapper, “Defect Density Distribution for LSI Yield Calculations,” IEEE Transactions on Electron Devices, Vol. ED-20, No. 7, pp. 655–657, July 1973.

    Google Scholar 

  29. M B. Ketchen, “Point Defect Yield Model for Wafer Scale Integration,” IEEE Circuits and Devices Magazine,” Vol. 1, No. 4, pp. 24–34, July 1985.

    Google Scholar 

  30. V. P. Nelson and B. D. Carroll, “Tutorial: Fault-Tolerant Computing,” CS Press, Los Alamitos, Order No. 677, Chapters l-2, 1986.

    Google Scholar 

  31. M. E. Zaghloul and D. Gobovic, “Fault Modeling of Physical Failures in CMOS VLSI Circuits,” IEEE Transactions on Circuits and Systems,” Vol. 37, No. 12, pp. 1528–1543, December 1990.

    Article  ISI  Google Scholar 

  32. R. T. Smith, “Using a Laser Beam to Substitute Good Cells for Bad,” Electronics, McGraw-Hill Publications, pp. 131–134, July 28, 1981.

    Google Scholar 

  33. E. Hamdy et al., “Dielectric Based Antifuse for Logic and Memory ICs,” International Electron Devices Meeting, Technical Digest, pp. 786–789, December 1988.

    Google Scholar 

  34. J. Birkner et al., “A Very High-Speed Field Programmable Gate Array Using Metal-to-Metal Antifuse Programmable Elements,” Custom Integrated Circuits Conference, Technical Digest, May 1991.

    Google Scholar 

  35. V. G. McKenny, “A 5V 64K EPROM Utilizing Redundant Circuitry,” IEEE International Solid-State Circuit Conference Digest of Technical Papers, pp. 146–147, February 1980.

    Google Scholar 

  36. T. P. Haraszti, “A Novel Associative Approach for Fault-Tolerant MOS RAMs,” IEEE Journal of Solid-State Circuits, Vol. SC-17, No. 3, June 1982.

    Google Scholar 

  37. R. P. Cenker et al., “A Fault-Tolerant 64K Dynamic RAM,” IEEE International Solid-State Circuit Conference, Digest of Technical Papers, pp. 150–151, February 1979.

    Google Scholar 

  38. T. P. Haraszti et al., “Novel Fault-Tolerant Integrated Mass Storage System,” European Solid-State Circuit Conference, Proceedings, pp. 141–144, September 1990.

    Google Scholar 

  39. J. C. Kemp, “Redundant Digital Systems,” Symposium on Redundancy Techniques for Computing Systems, Proceedings, pp. 285–293, 1962.

    Google Scholar 

  40. F. J. MacWilliams and N.J.A. Sloane, “The Theory of Error Correcting Codes, Vol. I and II, North-Holland, 1977.

    Google Scholar 

  41. C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technique Journal, No. 27, pp. 379–423, 623-656, 1948.

    Google Scholar 

  42. S. P. Lloyd,” Binary Block Coding,” Bell System Technique Journal, No. 36, pp. 517–535, 1957.

    Google Scholar 

  43. A. M. Michelson and A. H. Levesque, “Error-Control Techniques for Digital Communication,” Wiley-Interscience, pp. 234–269, 1985.

    Google Scholar 

  44. R. C. Bose and D. K. Ray-Chaudhuri, “On a Class of Error Correcting Binary Group Codes,” Information and Control, No. 3, pp. 68–79, 279-290, 1960.

    Google Scholar 

  45. S. Lin and E. J. Weldon, Jr., “Long BCH Codes are Bad,” Information Control, No. 11, pp. 445–451, 1967.

    Google Scholar 

  46. E. R. Berlekamp, “Goppa Codes,” IEEE Transactions on Information Theory, Vol. IT-18, pp. 415–426, 1972.

    MathSciNet  Google Scholar 

  47. W. W. Peterson and E. J. Weldon, Jr., “Error Correcting Codes,” MIT Press, 1972.

    Google Scholar 

  48. I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,” Journal SIAM, No. 8, pp. 300–304, 1960.

    Google Scholar 

  49. G. D. Forney, Jr., “Burst Correcting Codes for the Classic Burst Channel,” IEEE Transactions on Communication Techniques, Vol. COM-19, pp. 772–781, 1971.

    Google Scholar 

  50. T. Kasami and S. Lin, “On the Probability of Undetected Error for Maximum Distance Separable Codes,” IEEE Transactions on Communication, Vol. COM-32, pp. 998–1006, 1984.

    MathSciNet  Google Scholar 

  51. G. Birkhoff and S. MacLane, “A Survey of Modern Algebra,” Macmillan, 1965.

    Google Scholar 

  52. T. P. Haraszti, “Intelligent Fault-Tolerant Memories for Mass Storage Devices,” United States Air Force, Project F04701-85-C-0075, Report, pp. 69–78, January 1986.

    Google Scholar 

  53. J. M. Berger, “A Note on Error Detection Codes for Assymetric Channels,” Information and Control, No. 4, pp. 68–73, 1961.

    Google Scholar 

  54. A. Hocquenghem, “Error Corrector Codes” (Codes Correctoeurs d’Erreurs), Chiffres, No. 2, pp. 147–156, 1959.

    Google Scholar 

  55. R. W. Hamming, “Error Detecting and Error Correcting Codes,” Bell System Technique Journal, No. 29, pp. 147–160, 1950.

    Google Scholar 

  56. R. T. Chien, “Memory Error Control: Beyond Parity,” IEEE Spectrum, Vol. 10, No. 7, pp. 18–23, July 1973.

    ISI  Google Scholar 

  57. A. C. Singleton, “Maximum Distance q-nary Codes,” IEEE Transactions on Information Theory, Vol. IT-10, pp. 116–118, 1964.

    MathSciNet  Google Scholar 

  58. R. E. Blahut, “Theory and Practice of Error Control Codes,” Addison-Wesley, 1983.

    Google Scholar 

  59. P. Elias, “Coding for Noisy Channels,” IRE Convention Records, Part 4, pp. 37–46, 1955.

    Google Scholar 

  60. T. P. Haraszti and R. P. Mento, “Novel Circuits for Radiation Hardened Memories,” IEEE Nuclear Science Symposoium and Medical Imaging Conference, Proceedings, November 1991.

    Google Scholar 

  61. J. A. Fifield and C. H. Stapper, “High-Speed On-Chip ECC for Synergistic Fault-Tolerant Memory Chips,” IEEE Journal of Solid-State Circuits, Vo. 26, No. 10, pp. 1449–1452, October 1991.

    Article  ISI  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Reliability and Yield Improvement. In: Cmos Memory Circuits. Springer, Boston, MA. https://doi.org/10.1007/0-306-47035-7_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47035-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7950-8

  • Online ISBN: 978-0-306-47035-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics