Skip to main content

Memory Constituent Subcircuits

  • Chapter
Cmos Memory Circuits
  • 548 Accesses

Abstract

Subcircuits of memories, apart from the memory cells and sense amplifiers, are similar to those component circuits which are used in traditional digital and analog circuits. State-of-the-art requirements in combining very high circuit performances and packing densities, nevertheless, place the constituent subcircuits of CMOS memories in the forefront of the progress. For CMOS memory designs and analyses, this chapter provides a unique insight to the quasi-stationary transmission-line-like behavior of the array wires, to the memory specific aspects of the peripheral circuits, and to the reductions of the harmful signal reflections, and distortions, reference- and timing-inaccuracies and power-line bounces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Liboff and G. C. Dalman, “Transmission Lines, Waveguides, and Smith Charts,” Macmillan, 1985.

    Google Scholar 

  2. T. Sakurai, “Approximation of Wiring Delay in MOSFET LSI,” IEEE Journal of Solid-State Circuits, Vol. SC-18, No. 4, pp. 418–426, August 1983.

    Google Scholar 

  3. M. Shoji, “CMOS Digital Circuit Technology,” Prentice Hall, pp. 357–359, 1988.

    Google Scholar 

  4. C-Y. Wu, “The New General Realization Theory of FET-Like Integrated Voltage-Controlled Negative Differential Resistance Devices,” IEEE Transactions on Circuits and Systems, Vol. CAS28, pp. 382–390, May 1981.

    Google Scholar 

  5. M. Shoji and R. M. Rolfe, “Negative Capacitance by Terminator for Improving the Switching Speed of a Microcomputer Power Bus,” IEEE Journal of Solid-State Circuits, Vol. 50-20, pp. 828–832, August 1985.

    Google Scholar 

  6. K. Simonyi, “Theory of Electricity,” (Elmeleti Villamossagtan) Tankonyvkiado, pp. 407–447, 1960.

    Google Scholar 

  7. G. Bilardi, M. Pracchi and F. P. Preparata, “A Critique of Network Speed in VLSI Models of Computation,” IEEE Journal of Solid-State Circuits, Vol. SC-17, No. 4, pp. 696–702, August 1982.

    Google Scholar 

  8. P. R. Brent and H. T. Kung, “The Chip Complexity of Binary Arithmetic,” Proceedings of the 12th Symposium on Theory of Computing, pp. 190–200, April 1980.

    Google Scholar 

  9. C. D. Thompson, “A Complexity Theory for VLSI,” Ph.D. Thesis, Department of Computer Science, Carnegie-Mellon University, August 1980.

    Google Scholar 

  10. C. L. Seitz, “System Timing,” Chapter 7 in C. Mead and L. Conway, “Introduction to VLSI Systems,” Addison-Wesley 1979.

    Google Scholar 

  11. R. L. Street, “The Analysis and Solution of Partial Differential Equations,” Brooks and Cole, 1973.

    Google Scholar 

  12. T. P. Haraszti, “Radiation Hardened CMOS Memory Circuits” Technical Information, Rockwell International, Y78-758/501, July 1978.

    Google Scholar 

  13. D-S. Min et al., “Temperature-Compensation Circuit Techniques for High Density CMOS DRAMs,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 4, pp. 626–631, April 1992.

    Article  ISI  Google Scholar 

  14. D. L. Fraser, “High Speed MOSFET IC Design,” International Electronic Devices Meeting, Seminar Guidebook, pp.372–376, December 1986.

    Google Scholar 

  15. K. Nakamura et al., “A 500-MHz 4-Mb CMOS Pipeline-Burst Cache SRAM with Point-to-Point Noise Reduction Coding I/O,” IEEE Journal of Solid State Circuits, Vol. 32, No. 11, pp. 1758–1765, November 1997.

    Article  ISI  Google Scholar 

  16. K. Nagaraj and M. Satyan, “Novel CMOS Schmidt Trigger,” Electronic Letters, Vol. 17, pp. 693–694, September 1981.

    Google Scholar 

  17. E. L. Hudson and S. L. Smith, “An ECL Compatible 4K CMOS RAM,” ISSCC82, Digest of Technical Papers, pp. 248–249, February 1982.

    Google Scholar 

  18. R. E. Miller, “Switching Theory,” Chapter 10, Review of D. Muller’s Work, Wiley, 1965.

    Google Scholar 

  19. B. Razovi, “Monolithic Phase-Locked Loops and Clock Recovery Circuits, IEEE Press, 1996.

    Google Scholar 

  20. P. R. Gray and R. G. Meyer, “Analysis and Design of Analog Integrated Circuits,” John Wiley, 1977.

    Google Scholar 

  21. R. E. Best, “Phase-Locked Loops,” McGraw Hill, 1993.

    Google Scholar 

  22. F. M. Gardner, “Phaselock Techniques,” John Wiley, 1979.

    Google Scholar 

  23. H. B. Bakoglu and J. D. Meindl, “Optimal Interconnect Circuits for VLSI,” International Solid-State Circuit Conference, Digest of Technical Papers, pp. 164–165, February 1984.

    Google Scholar 

  24. J. R. Black, “Electromigration-A Brief Survey and Some Recent Results,” IEEE Transactions on Electron Devices, Vol. Ed-16, No. 4, pp. 338–339, 1969.

    Google Scholar 

  25. M. L. Cortes et al., “Modeling Power-Supply Disturbances in Digital Circuits,” International Solid-State Circuit Conference, Digest of Technical Papers, pp. 164–165, February 1986.

    Google Scholar 

  26. M. Shoji, “Reliable Chip Design Method in High Performance CMOS VLSI,” Digest ICCD86, pp. 389–392, October 1986.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Memory Constituent Subcircuits. In: Cmos Memory Circuits. Springer, Boston, MA. https://doi.org/10.1007/0-306-47035-7_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-47035-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7950-8

  • Online ISBN: 978-0-306-47035-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics