Skip to main content

Sense Amplifiers

  • Chapter
Cmos Memory Circuits
  • 624 Accesses

Abstract

Sense amplifiers, in association with memory cells, are key elements in defining the performance and environmental tolerance of CMOS memories. Because of their great importance in memory designs, sense amplifiers became a very large circuit-class. In this chapter, for the first time in publications, the sense amplifier circuits studied systematically and comprehensively from the basics to the advanced current-sensing circuits. The study includes circuit and operation descriptions, direct current, alternative current and transient signal analyses, design guides and performance-enhancement methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. J. Sheu et al., “BSIM: Berkeley Short Channel IGFET Model for MOS Transistors,” IEEE Journal of Solid-State Circuits, Vol. SC-22, No. 4, pp. 558–566, August 1987.

    MathSciNet  Google Scholar 

  2. B. Song and P. Grey, “Threshold-Voltage Temperature Drift in Ion-Implanted MOS Transistors,” IEEE Journal of Solid-State Circuits, Vol. SC-17, No. 2, pp. 291–298, April 1982.

    Google Scholar 

  3. T. P. Haraszti, “CMOS/SOS Memory Circuits for Radiation Environments,” IEEE Journal of Solid-State Circuits, Vol. SC-13, No. 5, October 1978.

    Google Scholar 

  4. R. R. Troutman and S. N. Chakvarti, “Subthreshold Characteristics of Insulated-Gate Field Effect Transistors,” IEEE Transactions on Circuit Theory, Vol. CT-20, pp. 659–665 November 1973.

    Google Scholar 

  5. W. N. Carr and J. P. Mize, “MOS/LSI Design and Application,” McGraw-Hill Books, pp. 19–24, 1972.

    Google Scholar 

  6. P. S. Winokur et al., “Total-Dose Failure Mechanisms of Integrated Circuits in Laboratory and Space Environments,” IEEE Transactions on Nuclear Science, Vol. NS-34(6), pp. 1448–1454 (1987).

    Google Scholar 

  7. P. K. Chatterjee et al., “Leakage Studiers in High-Density Dynamic MOS Memory Devicefs,” IEEE Journal of Solid-Stte Circuits, Vol. SC-14, No. 2, pp. 486–498, April 1979.

    Google Scholar 

  8. T. P. Haraszti and R. K. Pancholy, “Modern Digital CMOS VLSI,” Seminar Manuscript, University of California Berkeley, Continuing Education in Engineering, University Extension, pp. 59–60, March 1987.

    Google Scholar 

  9. N. N. Wang, “Digital Integrated Circuits,” Prentice-Hall, pp. 257–263, 1989.

    Google Scholar 

  10. F. F. Offner, “Push-Pull Resistance Coupled Amplifiers,” Review of Scientific Instruments, Vol. 8, pp. 20–21, January 1937.

    Article  ISI  Google Scholar 

  11. K. Y. Toh, P. K. Ko, and R. G. Meyer, “An Engineering Model for Short-Channel MOS Devices,” IEEE Journal of Solid-Stte Circuits, Vol. 23, No. 4, pp. 950–958, August 1988.

    Google Scholar 

  12. R. H. Crawford, “MOSFET in Circuit Design,” McGraw-Hill Book, pp. 31–37, 1967.

    Google Scholar 

  13. R. A. Colclaser, D. A. Neamen and C. F. Hawkins, “Electronic Circuit Analysis,” John Wiley and Sons, pp. 408–411,1984.

    Google Scholar 

  14. J. P. Uyemura, “Circuit Design for CMOS VLSI,” Kluwer Academic, pp. 405–408, 1992.

    Google Scholar 

  15. C. G. Sodini, P. K. Ko and J. L. Moll, “The Effects of High Fields on MOS Device and Circuit Performance, IEEE Transactions on Electron Devices Vol. ED-31, No. 10, pp. 1386–1393 October 1984.

    Google Scholar 

  16. T. Doishi, et al., “A Well-Synchronized Sensing/Equalizing Method for Sub-1.0-V Operating Advanced DRAMs,” IEEE Journal of Solid-State Circuits, Vol. 29, No. 4, pp. 432–440, April 1994.

    Google Scholar 

  17. J. J. Barnes and J. Y. Chan, “A High Performance Sense Amplifier for a 5V Dynamic RAM,” IEEE Journal of Solid State Circuits, Vol. SC-15 No. 5, October 1980.

    Google Scholar 

  18. N. N. Wang, “On the Design of MOS Dynamic Sense Amplifiers,” IEEE Transactions on Circuits and Systems, Vol. CAS-29, No. 7, pp. 467–477, July 1982.

    Google Scholar 

  19. H. Walker, “A 4-kbit Four-Transistor Dynamic RAM,” Carnegie-Mellon University, Research Report CMU-CS-83-140, June 1983.

    Google Scholar 

  20. T. P. Haraszti, “High Performance CMOS Sense Amplifiers,” United States Patent No. 4, 169, 233, Sep. 1979.

    Google Scholar 

  21. T. Seki, et al., “A 6-ns 1-Mb CMOS SRAM with Latched Sense Amplifier,” IEEEE Journal of Solid-State Circuits, Vol. 28, No. 4, April 1993.

    Google Scholar 

  22. P. R. Gray, “Basic MOS Operational Amplifier Design An Overview,” University of California Berkeley, Electronic Engineering and Computer Sciences Department, Tutorial Manuscript, March 1980.

    Google Scholar 

  23. T. N. Blalock and R. C. Jaeger, “A High Speed Scheme for 1T Dynamic RAMs Utilizing the Clamped Bit-Line Sense Amplifier,” IEEE Journal of Solid States, Vol. 27, No. 4, pp. 618–625, April 1992.

    Google Scholar 

  24. E. Seevinck, P. J. van Beers and H. Ontrop, “Current Mode Techniques for High Speed VLSI Circuits with Application to Current Sense Amplifier for CMOS SRAMs,” Vol. 26, No. 4, pp. 525–536, April 1991.

    Google Scholar 

  25. J. Fisher and B. Gatland, “Electronics From Theory Into Practice,” Vol. 2, Oxford Pergamon, 1976.

    Google Scholar 

  26. J. P. Uyemura, “Circuit Design for CMOS VLSI,” Kluwer Academic, pp. 405–408, 1992.

    Google Scholar 

  27. K. Seno, “A 9ns 16-Mb CMOS SRAM with Offset-Compensated Current Sense Amplifier,” IEEE Journal of Solid-State Circuits, Vol. 28, No. 11, pp. 11198–1124, November 1993.

    Article  Google Scholar 

  28. K. Ishibashi, et al., “A 6-ns 40-Mb CMOS SRAM with Offset-Voltage-Insensitive Current Sense Amplifiers,” IEEE Journal of Solid-State Circuits, Vol. 30, No. 4, pp. 480–486, April 1995.

    Article  ISI  Google Scholar 

  29. M. Bohus, “The Theory of Linear Controls,” (Linearis Szabalyozasok Elmelete) Technical University Budapest, Tankonyvkiado, 1966.

    Google Scholar 

  30. G. Fodor, “Analysis of Linear Systems,” (Linearis Rendszerek Analizise) Muszaki Konyvkiado, 1967.

    Google Scholar 

  31. H. Yamauchi et al., “A Circuit Design to Suppress Assymetrical Characteristics in High Density DRAM Sense Amplifiers,” IEEE Journal of Solid-State Circuits, Vol. 25, No. 1, pp. 36–41, February 1990.

    Article  ISI  MathSciNet  Google Scholar 

  32. T. P. Haraszti, “Associative Control for Fault-Tolerant CMOS/SOS RAMs,” European Solid-state Circuit Conference, Digest of Technical Papers, pp. 194–198, September 1981.

    Google Scholar 

  33. P. R. Gray and R. G. Meyer, “The Analysis and Design of Analog Integrated Circuits,” Wiley, 1977.

    Google Scholar 

  34. M. Annaratone, “Digital CMOS Circuit Design,” Kluwer Academic, pp. 198–200 1986.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Sense Amplifiers. In: Cmos Memory Circuits. Springer, Boston, MA. https://doi.org/10.1007/0-306-47035-7_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-47035-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7950-8

  • Online ISBN: 978-0-306-47035-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics