Skip to main content

Memory Cells

  • Chapter
Cmos Memory Circuits
  • 561 Accesses

Abstract

Memory cells are the fundamental components to all semiconductor memories, and their features predominantly effect the chip-size, operational speed and power dissipation of memory devices. This chapter examines the CMOS-compatible memory cells which are extensively applied or have good potentials to be used in CMOS memories. The examination of the memory cells comprises structural, storage-mechanism, write, read, design and improvement issues. The structural and operational characteristics of a memory cell set the primary parameters for the design of sense amplifier, memory-cell, array, reference and decoder circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. P. Noble and W. W. Walker, “Fundamental Limitations on DRAM Storage Capacitors,” IEEE Circuits and Devices Magazine, Vol. 1, No. 1, pp. 45–51, January 1985.

    Google Scholar 

  2. K. W. Kwon et al., “Ta2O5 Capacitors for 1 Gbit DRAM and Beyond,” IEEE International Electron Devices Meeting, Technical Digest, pp. 34.2.1–34.2.4, December 1994.

    Google Scholar 

  3. L. H. Parker and A. F. Tasch, “Ferroelectric Materials for 64 Mb and 256 Mb DRAMs,” IEEE Circuits and Devices Magazine, Vol. 6, No. 1, pp. 17–26, January 1990.

    Article  ISI  Google Scholar 

  4. J. C Burfoot, “Ferroelectrics: An Introduction to the Physical Principles,” D. Van Nostrand, 1967.

    Google Scholar 

  5. D. Bursky, “Memory and Logic Structures Are Getting Faster and Denser,” Electronic Design, pp. 40–46, December 1, 1997.

    Google Scholar 

  6. A. Goetzberger and E. Nicollian, “Transient Voltage Breakdown Due to Avalanche in MIS Capacitors,” Applied Physics Letters, Vol. 9, December 1966.

    Google Scholar 

  7. P. Chatterjee et al., “Trench and Compact Structures for DRAMS,” IEEE International Electron Devices Meeting, Technical Digest, pp. 128–131, December 1986.

    Google Scholar 

  8. H. Arima, “A Novel Stacked Capacitor Cell with Dual Cell Plate for 64 Mb DRAMs,” IEEE International Electron Devices Meeting, Technical Digest, pp. 27.2.1–27.2.4, December 1990.

    Google Scholar 

  9. P. C. Fazan and A. Ditali, “Electrical Characterization of Textured Interpoly Capacitors for Advanced Stacked DRAMs,” IEEE International Electron Devices Meeting, Technical Digest, pp. 27.5.1–27.5.4, December 1990.

    Google Scholar 

  10. S. Watanabe et al., “A Novel Circuit Technology with Surrounding Gate Transistors (SGTs) for Ultra High Density DRAMs,” IEEE Journal of Solid-State Circuits, Vol. 30, No. 9, pp. 960–971, September 1995.

    Article  ISI  Google Scholar 

  11. K. V. Rao et al., “Trench Capacitor Design Issues in VLSI DRAM Cells,” IEEE International Electron Devices Meeting, Technical Digest, pp. 140–143, December 1986.

    Google Scholar 

  12. W. M. Regitz and J. Karp, “A Three-transistor Cell, 1.024-bit, 500-ns MOS RAM,” International Solid-State Circuit Conference, Digest of Technical Papers, Vol. 13, pp. 42–43, February 1970.

    Google Scholar 

  13. R. G. Middleton, “Designing Electronic Circuits,” Prentice-Hall, pp. 221–226, October 1986.

    Google Scholar 

  14. C. F. Hill, “Noise Margin and Noise Immunity in Logic Circuits,” Microelectron, Vol. 1, pp. 16–21, April 1968.

    Google Scholar 

  15. A. Bryant, W. Hansch and T. Mii, “Characteristics of CMOS Device Isolation for the ULSI Age,” IEEE International Electron Devices Meeting, Technical Digest, pp. 28.1.1–28.1.4, December 1994.

    Google Scholar 

  16. C. E. Chen et al., “Stacked CMOS SRAM Cell,” IEEE Electron Device Letters, Vol. EDL-4, No. 8, pp. 272–274, August 1983.

    Google Scholar 

  17. W. Dunn and T. P. Haraszti, “1-Mbit and 4-Mbit RAMs with Static Polysilicon-Load Memory Cells,” Semi Inc., Technical Report, October 1974.

    Google Scholar 

  18. T. P. Haraszti, “Novel Circuits for High Speed ROMs,” IEEE Journal of Solid State Circuits, Vol. SC-19, No. 2, pp. 180–186, April 1984.

    Google Scholar 

  19. P. R. Gray, D. A. Hodges and R. W. Brodersen, “Analog MOS Integrated Circuits,” IEEE Press, 1980.

    Google Scholar 

  20. T. P. Haraszti, “Circuit-Techniques and Applications of MOS LSI,” (Schaltungs-techniken und Anwendungen von MOS-Grosschaltungen), Semiconductor Seminar, Telefunken, Digest (Kurzfassungen), 1969.

    Google Scholar 

  21. J. T. Koo, “Integrated-Circuit Content-Addressable Memories,” IEEE Journal of Solid-State Circuits, Vol. SC-5, pp. 208–215, October 1970.

    ISI  Google Scholar 

  22. R. M. Lea, “Low-Cost High-Speed Associative Memory,” IEEE Journal of Solid-Sttae Circuits, Vol. SC-10, pp. 179–181, June 1975.

    Google Scholar 

  23. S.M.S. Jalaleddine and L. G. Johnson, “Associative IC Memories with Relational Search and Nearest-Match Capabilities, Vol. 27, No. 6, pp. 892–900, June 1992.

    Google Scholar 

  24. T. P. Haraszti, “Flip-Flop Circuits with Tunnel Diodes,” (Billenokorok Alagutdiodakkal), Radiotechnika, Vol. XV, No. 12, pp. 444–447, December 1965.

    Google Scholar 

  25. G. Frazier, et al., “Nanoelectric Circuits Using Resonant Tunelling Transistors and Diodes,” IEEE International Solid-State Circuit Conference, Digest of Technical Papers, pp. 174–175, February 1993.

    Google Scholar 

  26. W. S. Boyle and C. E. Smith, “Charge Coupled Semiconductor Devices,” Bell System Technical Jounral, No. 47(4), pp. 587–593, April 1970.

    Google Scholar 

  27. E. R. Hnatek, “A User’s Handbook of Semiconductor Memories,” John Wiley and Sons, pp. 609–646, 1977.

    Google Scholar 

  28. F. Lai, Y. L. Chuang and S. J. Chen, “A New Design Methodology for Multiport SRAM Cell,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 41, No. 11, pp. 677–685, November 1994.

    ISI  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Memory Cells. In: Cmos Memory Circuits. Springer, Boston, MA. https://doi.org/10.1007/0-306-47035-7_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47035-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7950-8

  • Online ISBN: 978-0-306-47035-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics