Skip to main content

Magnetic Separation for Nuclear Material Surveillance

  • Chapter
Emerging Technologies in Hazardous Waste Management 8

Abstract

A high performance superconducting magnet is being developed for particle retrieval from field collected samples. Results show that the ratio of matrix fiber diameter to the diameter of the captured particles is an important parameter. The development of new matrix materials is being pursued through the controlled corrosion of stainless steel wool, or the deposition of nickel dendrites on the existing stainless steel matrix material. We have also derived a model from a continuity equation that uses empirically determined capture cross section values. This enables the prediction of high gradient magnetic separator performance for a variety of materials and applications. The model can be used to optimize the capture cross section and thus increase the capture efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Svoboda, J. Magnetic Methods for the Treatment of Minerals; Elsevier: New York, 1987.

    Google Scholar 

  2. J. Lyman in High-Gradient Magnetic Separation, Unit Operations for Treatment of Hazardous Industrial Wastes, D.J. De Renzo, ed. Noyes Data Corp., Park Ridge, New Jersey, 1978, pp. 590–609.

    Google Scholar 

  3. Arvidson, B.R. and Henderson, D. Minerals Engineering, 1997, 10, 127.

    Article  CAS  Google Scholar 

  4. Richards, A.J., Roath, O.S., Smith, R.J.S., and Watson, J.H.P. IEEE Trans. On Magnetics, 1996, 32(2), 459.

    Article  Google Scholar 

  5. Pourfarzaneh, M., Snavely, K., and Lawlor, J. Genetic Engineering News, 1995, 15,(13).

    Google Scholar 

  6. Avens, L.R., Hill, D.D., Prenger, F.C., Stewart, W.F., Tolt, T.L., and Worl, L.A. “Process to Remove Actinides from Soil Using Magnetic Separation,” The Regents of the University of California, Office of Technology Transfer, Alameda, CA, United States (US. Corporation), US Patent 5538701 960723, 1996.

    Google Scholar 

  7. Nuñez, L., Buchholz, B.A., and Vandegrift, G.F. Sep. Sci. & Tech., 1995, 30, 1455–1472.

    Google Scholar 

  8. Ritter, J.A., Zamecnik, J.R., Hutson, N.D., Smith, M.E., and Carter, J.T. Wat. Sci. Tech. 1992, 25, 269.

    CAS  Google Scholar 

  9. Iannicelli, J. Clays and Clay Minerals, 1976, 24, 64–68.

    CAS  Google Scholar 

  10. Schake, A.R., Avens, L.R., Hill, D.D., Padilla, D., Prenger, F.C., and Worl, L.A. Conference Proceedings, Conference: 207. Spring National Meeting of the American Chemical Society (ACS), San Diego, CA (United States), 13–18 Mar 1994.

    Google Scholar 

  11. Coe, B.T., Gerber, R., and Witts, D. IEEE Trans. On Magnetics, 1998, 34(4) 2126–2128.

    Article  CAS  Google Scholar 

  12. Yiacoumi, S., Rountree, D.A., and Tsouris, C. J. of Colloid and Interface Science, 1996, 184, 477438.

    Google Scholar 

  13. Emory, B.B. IEEE Trans. On Magnetics, 1981, Mag-17, 3296.

    CAS  Google Scholar 

  14. Kolm, H., Kelland, J., and Kelland, D. Sci. Am., 1975, 46.

    Google Scholar 

  15. Ebner, A.D., Ritter, J.A., and Ploehn, H.J. Separation and Purification Technology, 1997, 11, 199.

    Article  CAS  Google Scholar 

  16. Haque, M.F., Aidun, R., Moyer, C., and Arajs, S. J. Appl. Phys. 1988, 63, 3239.

    CAS  Google Scholar 

  17. Tsukamoto, O. and Ohizumi, T. IEEE Transactionson Appl. Superconductivity, 1995, 5(2), 311–313.

    Google Scholar 

  18. Kelland, D.R. IEEE Trans. On Magnetics, 1998, 34(4), 2123–2125.

    Article  Google Scholar 

  19. Akoto, I.Y IEEE Transactions on Magnetics, 1977, Mag-13(5), 1486.

    Google Scholar 

  20. Friedlander, F.J., Takayasu, M., Retttig, J.B., and Kentzer, C.P. IEEE Transactions on Magnetics, 1978, Mag-14(6), 1158–1164.

    Google Scholar 

  21. Lawson, W.F., Simons, W.H., and Treat, R.P. Journal of Applied Physics, 1977, 48(8), 3213–3224.

    Article  Google Scholar 

  22. Luborsky, F.E. and Drummond, B.J. IEEE Transactions on Magnetics, 1976, Mag-12(5), 463–465.

    Google Scholar 

  23. Nesset, J.E. and Finch, J.A. Industrial Applications of Magnetic Separation, Conference Proceedings, pp. 188–196, July 1978.

    Google Scholar 

  24. Stekly, Z.J.J. and Minervini, J.V. IEEE Transactions on Magnetics, 1976, Mag-12(5) pp. 474479.

    Google Scholar 

  25. Watson, J.H.P. J. Applied Physics, 1973, 44(9) 4209–4213.

    Article  CAS  Google Scholar 

  26. Prenger, F.C., Stewart, W.F., Hill, D.D., Avens, L.R., Worl, L.A., Schake, A., deAguero, K.J., Padilla, D.D., and Tolt, T.L. Adv. in Cryogenic Engineering, 1994, 34, 485.

    Google Scholar 

  27. Tanner and Jackson, Soil Science Society Amer. Proc. 1947, 12.

    Google Scholar 

  28. Methods of Soil Analysis, Part I, Klute, A. ed., American Society of Agronomy, Inc. Soil Science Society of America, Inc. Madison, Wisconsin, 1986, Chapter 15.

    Google Scholar 

  29. Stephens, B.G., Felkel, H.L., and Spinelli, W.M. Anal. Chem. 1974, 46, 692.

    Article  CAS  Google Scholar 

  30. Grimmer, D.P., Herr, K.C., and McCreary, W.J. J. Vac. Sci. Technol., 1978, 15, 59.

    Article  CAS  Google Scholar 

  31. Allard, B. in Actinides in Perspective, Edelstein, N.M. Ed. Proceedings of the Actinides-1981 Conference, Pergamon Press, New York, 1982, 553–580.

    Google Scholar 

  32. Delegard, C.H. Radiochim Acta, 1987, 41, 11–21.

    CAS  Google Scholar 

  33. Oberteuffer, J.A. IEEE Trans. Mag., MAG-10 (1974), 223.

    Google Scholar 

  34. Collan, H.K., Jantunen, J., Kokkala, M., and Ritvos, A. IEEE Trans. Mag., MAG-14, (1978), 398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Worl, L.A., Devlin, D., Hill, D., Padilla, D., Prenger, F.C. (2002). Magnetic Separation for Nuclear Material Surveillance. In: Tedder, D.W., Pohland, F.G. (eds) Emerging Technologies in Hazardous Waste Management 8. Springer, Boston, MA. https://doi.org/10.1007/0-306-46921-9_19

Download citation

  • DOI: https://doi.org/10.1007/0-306-46921-9_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46362-4

  • Online ISBN: 978-0-306-46921-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics