Skip to main content

The Mechanism of Amyloid Formation and Its Links to Human Disease and Biological Evolution

  • Chapter
Self-Assembling Peptide Systems in Biology, Medicine and Engineering
  • 234 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fersht, A. R. (1999) Structure and Mechanism in Protein Science (W.H. Freeman, New York).

    Google Scholar 

  2. Dobson, C. M. & Ptits, O. B. (1999) The biological consequences of physical principles, Current Opinion in Structural Biology 9, 89–91.

    CAS  Google Scholar 

  3. Radford, S. E. & Dobson, C. M. (1999) From computer simulations to human disease: Emerging themes in protein folding, Cell 97, 291–298.

    Article  CAS  PubMed  Google Scholar 

  4. Suzuki, C. K., Rep, M., vanDijl, J. M., Suda, K., Grivell, L. A. & Schatz, G. (1997) ATP-dependent proteases that also chaperone protein biogenesis, Trends in Biochemical Sciences 22, 118–123.

    Article  CAS  PubMed  Google Scholar 

  5. Thomas, P. J., Qu, B. H. & Pedersen, P. L. (1995) Defective protein-folding as a basis of human-disease, Trends in Biochemical Sciences 20,456–459.

    Article  CAS  PubMed  Google Scholar 

  6. Tan, S. Y. & Pepys, M. B. (1994) Amyloidosis, Histopathology 25, 403–414.

    CAS  PubMed  Google Scholar 

  7. Kelly, J. W. (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways, Current Opinion in Structural Biology 8, 101–106.

    Article  CAS  PubMed  Google Scholar 

  8. Lansbury, P. T. (1999) Evolution of amyloid: What normal protein folding may tell us about fibrillogenesis and disease, Proceedings of the National Academy of Sciences of the United States of America 96, 3342–3344.

    Article  CAS  PubMed  Google Scholar 

  9. Perutz, M. F. (1999) Glutamine repeats and neurodegenerative diseases: molecular aspects, Trends in Biochemical Sciences 24,58–63.

    Article  CAS  PubMed  Google Scholar 

  10. Trombetta, E. S. & Helenius, A. (1998) Lectins as chaperones in glycoprotein folding, Current Opinion in Structural Biology 8,587–592.

    Article  CAS  PubMed  Google Scholar 

  11. Sunde, M. & Blake, C. (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction, Advances in Protein Chemistry 50, 123–159.

    Article  CAS  PubMed  Google Scholar 

  12. Mullins, J. (1993) Crystallization (Butterworth-Heineman, Oxford).

    Google Scholar 

  13. Horwich, A. L. & Weissman, J. S. (1997) Deadly conformations — Protein misfolding in prion disease, Cell 89,499–510.

    Article  CAS  PubMed  Google Scholar 

  14. Harper, J. D. & Lansbury, P. T. (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins, Annual Review of Biochemistry 66, 385–407.

    Article  CAS  PubMed  Google Scholar 

  15. Prusiner, S. B. (1997) Prion diseases and the BSE crisis, Science 278, 245–251.

    Article  CAS  PubMed  Google Scholar 

  16. Weissmann, C. (1999) Molecular Genetics of Transmissible Spongiform Encephalopathies, Journal of Biological Chemistry 274, 3–6.

    Article  CAS  PubMed  Google Scholar 

  17. Caughey, B. & Chesebro, B. (1997) Prion protein and the transmissible spongiform encephalopathies, Trends in Cell Biology 7,56–62.

    Article  CAS  PubMed  Google Scholar 

  18. Jackson, G. S., Hosszu, L. L. P., Power, A., Hill, A. F., Kenney, J., Saibil, H., Craven, C. J., Waltho, J. P., Clarke, A. R. & Collinge, J. (1999) Reversible conversion of monomeric human prion protein between native and fibrillogenic conformations, Science 283, 1935–1937.

    Article  CAS  PubMed  Google Scholar 

  19. Fink, A. L. (1 988) Protein aggregation: folding aggregates, inclusion bodies and amyloid, Fold. Des. 3, R9–R23.

    Google Scholar 

  20. Guijarro, J. I., Sunde, M., Jones, J. A., Campbell, I. D. & Dobson, C. M. (1998) Amyloid fibril formation by an SH3 domain, Proceedings of the National Academy of Sciences of the United States of America 95, 4224–4228.

    Article  CAS  PubMed  Google Scholar 

  21. Litvinovich, S. V., Brew, S. A., Aota, S., Akiyama, S. K., Haudenschild, C. & Ingham, K. C. (1998) Formation of amyloid-like fibrils by self-association of a partially unfolded fibronectin type III module, Journal of Molecular Biology 280,245–258.

    Article  CAS  PubMed  Google Scholar 

  22. Chiti, F., Webster, P., Taddei, N., Clark, A., Stefani, M., Ramponi, G. & Dobson, C. M. (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils, Proceedings of the National Academy of Sciences of the United States of America 96, 3590–3594.

    Article  CAS  PubMed  Google Scholar 

  23. Clark, A. H., J.udge, F. J., Richards, J. B., Stubbs, J. M. and Suggett, A. (1981) Electron microscopy of network structures in thermally-induced globular protein gels, Int. J. Pept. Protein Res. 117, 380–392.

    Google Scholar 

  24. Jimenez, J. L., Guijarro, J. L., Orlova, E., Zurdo, J., Dobson, C. M., Sunde, M. & Saibil, H. R. (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing, Embo Journal 18, 815–821.

    CAS  PubMed  Google Scholar 

  25. Dobson, C. M. & Karplus, M. (1999) The fundamentals of protein folding: bringing together theory and experiment, Current Opinion in Structural Biology 9, 92–101.

    CAS  PubMed  Google Scholar 

  26. Luby-Phelps, K. (1994) Physical-properties of cytoplasm, Current Opinion in Cell Biology 6, 3–9.

    CAS  PubMed  Google Scholar 

  27. Eaton, W. A., Munoz, V., Thompson, P. A., Henry, E. R. & Hofrichter, J. (1998) Kinetics and dynamics of loops, alpha-helices, beta-hairpins, and fast-folding proteins, Accounts of Chemical Research 31,745–753.

    Article  CAS  Google Scholar 

  28. Shakhnovich, E., Abkevich, V. & Ptitsyn, O. (1996) Conserved residues and the mechanism of protein folding, Nature 379,96–98.

    Article  CAS  PubMed  Google Scholar 

  29. Wildegger, G., Liemann, S. & Glockshuber, R. (1999) Extremely rapid folding of the C-terminal domain of the prion protein without kinetic intermediates, Nature Structural Biology 6, 550–553.

    CAS  PubMed  Google Scholar 

  30. Lindquist, S. (1997) Mad cows meet psi-chotic yeast: The expansion of the prion hypothesis, Cell 89, 495–498.

    Article  CAS  PubMed  Google Scholar 

  31. Wickner, R. B., Edskes, H. K., Maddelein, M. L., Taylor, K. L. & Moriyama, H. (1999) Prions of yeast and fungi — Proteins as genetic material, Journal of Biological Chemistry 274, 555–558.

    Article  CAS  PubMed  Google Scholar 

  32. Glover, J. R., Kowal, A. S., Schirmer, E. C., Patino, M. M., Liu, J. J. & Lindquist, S. (1997) Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S-cerevisiae, Cell 89, 811–819.

    Article  CAS  PubMed  Google Scholar 

  33. King, C. Y., Tittmann, P., Gross, H., Gebert, R., Aebi, M. & Wuthrich, K. (1997) Prion-inducing domain 2–114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments, Proceedings of the National Academy of Sciences of the United States of America 94, 6618–6622.

    Article  CAS  PubMed  Google Scholar 

  34. Cech, T. R. (1986) RNA as an enzyme, Scientific American 255, 64 et seq.

    Article  CAS  PubMed  Google Scholar 

  35. Csermely, P. (1997) Proteins, RNAs and chaperones in enzyme evolution: A folding perspective, Trends in Biochemical Sciences 22, 47–149.

    Article  Google Scholar 

  36. Baures, P. W., Oza, V. B., Peterson, S. A. & Kelly, J. W. (1999) Synthesis and evaluation of inhibitors of transthyretin amyloid formation based on the non-steroidal anti-inflammatory drug, flufenamic acid, Bioorganic & Medicinal Chemistry 7, 1339–1347.

    Article  CAS  Google Scholar 

  37. Villegas, V., Zurdo, J., Filimonov, V. V., Aviles, F. X., Dobson, C. M. & Serrano, L. (2000) Protein engineering as a strategy to avoid formation of amyloid fibrils, Protein Science, in press.

    Google Scholar 

  38. Chiti, F., Capanni, C., Taddei, N., Stefani, M., Ramponi, G. & Dobson, C. M. Specific regions of a protein determine the kinetics of aggregation and amyloid formation,(submitted for publication).

    Google Scholar 

  39. Aggeli, A., Bell, M., Boden, N., Keen, J. N., Knowles, P. F., McLeish, T. C. B., Pitkeathly, M. & Radford, S. E. (1997) Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes Nature 386, 259–262.

    Article  CAS  PubMed  Google Scholar 

  40. MacPhee, C. E. & Dobson, C. M. (2000) Chemical dissection and reassembly of amyloid fibrils formed by a peptide fragment of transthyretin, Journal of Molecular Biology 297, 1203–1215.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dobson, C.M. (2002). The Mechanism of Amyloid Formation and Its Links to Human Disease and Biological Evolution. In: Self-Assembling Peptide Systems in Biology, Medicine and Engineering. Springer, Dordrecht. https://doi.org/10.1007/0-306-46890-5_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-46890-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7090-1

  • Online ISBN: 978-0-306-46890-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics