Skip to main content

Abstract

Adenovirus fibers are trimeric proteins that protrude from the 12 five-fold vertices of the virion. They consist of three segments: a N-terminal tail, a thin shaft carrying 15-amino acid pseudo-repeats, and a C-terminal globular head (or knob) which recognizes theprimary cell receptor. Our recent folding studies have demonstrated that the fiber unfolds in SDS through a stable intermediate in which the C-terminal head and five repeats of the shaft remain folded and trimeric. This stable domain has been cloned and expressed in Escherichia coli and its structure has been solved at 2.4Å resolution. The structure reveals a novel triple β-spiral fibrous fold for the shaft. In order to assemble into the correct triple β-spiral conformation, the shaft needs to be brought into the correct registration. The globular head appears to act as the registration signal, and in its absence synthetic peptides corresponding to shaft sequences fail to assemble correctly. Instead, they aggregate and form amyloid-like fibrils. In this chapter we discuss the fiber as a model system to address the interplay between folding, assembly and misassembly of β-sheet proteins. We also discuss potential implications for materials science since this protein has been used as a model for synthetic fiber design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Valentine, R.C. and Pereira, H.G. (1965) J. Mol. Biol. 13, 13–20.

    Article  CAS  Google Scholar 

  2. Ginsberg, H.S., Pereira, H.G., Valentine, R.C. and Wilcox, W.C. (1966) Virology 28, 782–3.

    Article  CAS  Google Scholar 

  3. Philipson, L., Lonberg-Holm, K. and Pettersson, U. (1968) J. Virol. 2, 1064–1075.

    CAS  Google Scholar 

  4. Devaux, C., Caillet-Boudin, M.L., Jacrot, B. and Boulanger, P. (1987) Virology 161, 121–128.

    Article  CAS  Google Scholar 

  5. Devaux, C., Adrian, M., Berthet-Colominas, C., Cusack, S. and Jacrot, B. (1990) J Mol. Biol. 215, 567–588.

    CAS  Google Scholar 

  6. Bergelson, J.M., Cunningham, J.A., Droguett, G., Kurt-Jones, E.A., Krithivas, A., Hong, J.S., Horwitz, M.S., Crowell, R.L. and Finberg, R.W. (1997) Science 275, 1320–1323.

    Article  CAS  Google Scholar 

  7. Roelvink, P.W., Lizonova, A., Lee, J.G., Li, Y., Bergelson, J.M., Finberg, R.W., Brough, D.E., Kovesdi, I. and Wickham, T.J. (1998) J. Virol. 72, 7909–7915.

    CAS  Google Scholar 

  8. Green, N.M., Wrigley, N.G., Russell, W.C., Martin, S.R. and McLachlan, A.D. (1983) EMBO J. 2, 1357–65.

    CAS  Google Scholar 

  9. Ruigrok, R.W., Barge, A., Albiges-Rizo, C. and Dayan, S. (1990) J. Mol. Biol. 215, 589–596.

    CAS  Google Scholar 

  10. Goldenberg, D.P., Smith, D.H. and King, J. (1983) Biopolymers 22, 125–129. 11.

    Article  CAS  Google Scholar 

  11. Fuchs, A., Seiderer, C. and Seckler, R. (1991) Biochemistry 30, 6598–604.

    Article  CAS  Google Scholar 

  12. Mitraki, A., Fane, B., Haase-Pettingell, C., Sturtevant, J. and King, J. (1991) Science 253, 54–58.

    CAS  Google Scholar 

  13. Mtraki, A., Danner, M., King, J. and Seckler, R. (1993) J Biol. Chem. 268, 20071–20075.

    Google Scholar 

  14. Betts, S. and King, J. (1999) Structure Fold. Des. 7, R131–R139.

    CAS  Google Scholar 

  15. Doms, R.W., Lamb, R.A., Rose, J.K. and Helenius, A. (1993) Virology 193, 545–62.

    Article  CAS  Google Scholar 

  16. Tatu, U. and Helenius, A. (1997) J. Cell. Biol. 136, 555–565.

    Article  CAS  Google Scholar 

  17. Lee, P.W. and Leone, G. (1994) Bioessays 16, 199–206.

    Article  CAS  Google Scholar 

  18. Hong, J.S. and Engler, J.A. (1991) Virology 185, 758–767.

    CAS  Google Scholar 

  19. Novelli, A. and Boulanger, P.A. (1991) J. Biol. Chem. 266, 9299–9303. 20.

    CAS  Google Scholar 

  20. Mitraki, A., Barge, A., Chroboczek, J., Andrieu, J.P., Gagnon, J. and Ruigrok, R.W. (1999) Eur. J. Biochem. 264, 599–606.

    Article  CAS  Google Scholar 

  21. Fender, P., Kidd, A.H., Brebant, R., Oberg, M., Drouet, E. and Chroboczek, J. (1995) Virology 214, 110–117.

    Article  CAS  Google Scholar 

  22. van Raaij M.J., Mitraki, A., Lavigne, G. and Cusack, S. (1999) Nature 401, 935–938.

    Google Scholar 

  23. van Raaij M.J., Louis, N., Chroboczek, J. and Cusack, S. (1999) Virology 262, 333–343.

    Google Scholar 

  24. Xia, D., Henry, L.J., Gerard, R.D. and Deisenhofer, J. (1994) Structure 2, 1259–1270.

    Article  CAS  Google Scholar 

  25. Stouten, P.F., Sander, C., Ruigrok, R.W. and Cusack, S. (1992) J Mol. Biol. 226, 1073–1084.

    Article  CAS  Google Scholar 

  26. Chen, B. and King, J. (1991) Biochemistry 30, 6260–6269.

    CAS  Google Scholar 

  27. Novelli, A. and Boulanger, P.A. (1991) Virology 185, 365–376.

    Article  CAS  Google Scholar 

  28. Hong, J.S. and Engler, J.A. (1996) J. Virol. 70, 7071–7078.

    CAS  Google Scholar 

  29. Engel, J. and Prockop, D.J. (1991) Annu. Rev. Biophys. Biophys. Chem. 20, 137–152.

    CAS  Google Scholar 

  30. McLaughlin, S.H. and Bulleid, N.J. (1998) MatrixBiol. 16, 369–377.

    CAS  Google Scholar 

  31. Louis, N., Fender, P., Barge, A., Kitts, P. and Chroboczek, J. (1994) J Virol. 68, 4104–4106.

    CAS  Google Scholar 

  32. Henry, L.J., Xia, D., Wilke, M.E., Deisenhofer, J. and Gerard, R.D. (1994) J Virol. 68, 5239–5246.

    CAS  Google Scholar 

  33. Macejak, D.G. and Luftig, R.B. (1991) Virology 180, 120–125.

    Article  CAS  Google Scholar 

  34. O’Brien, J.P., Hoess, R.H., Gardner, K.H., Lock, R.L., Wasserman, Z.R., Weber, P.C., and Salemme, F.R. (1993) Design, synthesis, and fabrication of a novel self-assembling fibrillar protein, in D. Kaplan, W.W. Adams, B. Farmer and C. Viney (eds), Silk Polymers, Materials Science and Biotechnology, American Chemical Society, Washington D.C., pp. 104–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Mitraki .

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mitraki, A., Van Raaij, M., Ruigrok, R., Cusack, S., Hernandez, JF., Luckey, M. (2002). Structure, Folding and Assembly of Adenovirus Fibers. In: Self-Assembling Peptide Systems in Biology, Medicine and Engineering. Springer, Dordrecht. https://doi.org/10.1007/0-306-46890-5_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-46890-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7090-1

  • Online ISBN: 978-0-306-46890-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics