Skip to main content

Model Signal Peptides: Probes of Molecular Interactions During Protein Secretion

  • Chapter
Self-Assembling Peptide Systems in Biology, Medicine and Engineering
  • 233 Accesses

Abstract

A signal peptide is required for the entry of a protein into the secretory pathway but how it functions in concert with the other transport components to achieve protein localization is not known. In Escherichia coli, SecA is a component of the transport machinery which may play a role in targeting the preprotein to membrane-bound translocation sites and then utilize the energy of ATP hydrolysis to initiate membrane insertion of the preprotein. This model requires that the signal peptide interact specifically with SecA and that features of the signal peptide promote binding. These issues were examined using a wild type synthetic signal sequence derived from E. coli alkaline phosphatase and several model signal peptides that differ in amino-terminal charge, core region hydrophobicity, and the ability to form an α-helical structure. Using a SecA/lipid ATPase assay as an indicator of binding, we observe maximum activity with the functional wild type peptide, 3K7L and 1K7L; these have very hydrophobic core regions and a high propensity for α-helix formation, while no significant reactions were noted for the non-functional peptides, 3K2L and 1K2L. Although peptides of intermediate hydrophobicity, 3K4L and 1K4L, both stimulated the SecA ATPase activity to an intermediate extent, the level of stimulation was more marked with the 3K4L peptide. This is consistent with in vivo analyses which indicate that for signal peptides of intermediate hydrophobicity, the amino terminal basic residues also play a key role in enhancing transport activity. The data suggest that signal peptide core region hydrophobicity, amino-terminal charge, and α-helicity contribute to the modulation of SecA/lipid ATPase activity by altering the binding affinity of the peptide for SecA. Separately, a competition binding assay was employed to establish that signal peptides also interact with SecA in aqueous solution. Furthermore, the interaction of functional signal peptides with SecA alters the SecA conformation sufficiently, for both soluble and membrane-associated forms, to cause a marked change in its V8 protease sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akita, M., Sasaki, S., Matsuyama, S., and Mizushima, S. (1990) SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli, J. Biol. Chem. 265, 8164–8169

    CAS  Google Scholar 

  • Arkowitz, R. A., and Wickner, W. (1994) SecD and SecF are required for the proton electrochemical gradient stimulation of preprotein translocation, EMBO J. 13, 954–963

    CAS  Google Scholar 

  • Blanco, J., Driessen, J. M., Coque, J. J. R., and Martin, J. F. (1998) Biochemical characterization of the SecA protein of Streptomyces lividans interaction with nucleotides, binding to membrane vesicles and in vitro translocation of proAmy protein, Eur. J. Biochem. 257, 472–478

    Article  CAS  Google Scholar 

  • Chou, M. M., and Kendall, D. A. (1990) Polymeric sequences reveal a functional interrelationship between hydrophobicity and length of signal peptides, J. Biol. Chem. 265, 2873–2880

    CAS  Google Scholar 

  • Collier, D. N., Bankaitis, V. A., Weiss, J. B., and Bassford, P. J. Jr. (1988) The antifolding activity of SecB promotes the export of the E. coli.maltose-binding protein, Cell 53, 273–283

    Article  CAS  Google Scholar 

  • den Blaauwen, T, Fekkes, P., de Wit, J. G., Kuiper, W., and Driessen, A. J. M. (1996) Domain interactions of the peripheral preprotein translocase subunit, Biochemistry 35, 11994–12004

    Google Scholar 

  • Dolan, K. M., and Oliver, D. B. (1991) Characterization of Escherichia coli SecA protein binding to a site on its mRNA involved in autoregulation, J. Biol. Chem. 266, 23329–23333

    CAS  Google Scholar 

  • Doud, S. K., Chou, M. M., and Kendall, D. A. (1993) Titration of protein transport activity by incremental changes in signal peptide hydrophobicity, Biochemistry 32, 1251–1256

    Article  CAS  Google Scholar 

  • Duong, F., and Wickner, W. (1997) Distinct catalytic roles of the SecYE, SecG, and SecDFyajC subunits of preprotein translocase holoenzyme, EMBO J. 16, 2756–2768

    CAS  Google Scholar 

  • Economou, A., and Wickner, W. (1994) SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion, Cell 78, 835–843

    Article  CAS  Google Scholar 

  • Eichler, J., and Wickner, W. (1997) Both an N-terminal 65-kDa domain and a C-terminal 30-kDa domain of SecA cycle into the membrane at SecYEG during translocation, Proc. Natl. Acad. Sci. U.S.A. 94, 5574–5581.

    Article  CAS  Google Scholar 

  • Fauchére, J. L., Charton, M., Kier, L. B., Verloop, A., and Pliska, V. (1988) Amino acid side chain parameters for correlation studies in biology and pharmacology, Int. J. Pept. Prot. Res. 32, 269–278

    Google Scholar 

  • Hardy, S. J. S., and Randall, L. L. (1991) A kinetic partitioning model of selective binding of nonnative proteins by the bacterial chaperone SecB, Science 251, 439–443

    CAS  Google Scholar 

  • Hartl, F.-U., Lecker, S., Schiebel, E., Hendrick, J., and Wickner, W. (1990) The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane, Cell 63, 269–279

    Article  CAS  Google Scholar 

  • Hendrick, J. P., and Wickner, W. (1991) SecA protein needs both acidic phospholipids and SecY/E protei:: for functional high-affinity binding to the Escherichia coli plasma membrane, J. Biol. Chem. 266, 24596–24600

    CAS  Google Scholar 

  • Iino, T., Takahashi, M., and Sako, T. (1987) Role of amino-terminal positive charge on signal peptide in staphylokinase export across the cytoplasmic membrane of Escherichia coli, J. Biol. Chem. 262, 7412–7417

    CAS  Google Scholar 

  • Inouye, S., Soberon, X., Franceschini, T., Nakamura, K., Itakura, K., and Inouye, M. (1982) Role of positive charge on the amino-terminal region of the signal peptide in protein secretion across the membrane, Proc. Natl. Acad. Sci. U.S.A. 79, 3438–3441

    CAS  Google Scholar 

  • Ito, K. (1992) SecY and integral membrane components of the Escherichia coli protein translocation system, Mol. Microbiol. 6, 2423–2428

    CAS  Google Scholar 

  • Izard, J. W., Doughty, M. B., and Kendall, D. A. (1995) Physical and conformational properties of synthetic idealized signal sequences parallel their biological function, Biochemistry 34, 9904–9912

    Article  CAS  Google Scholar 

  • Izard, J. W., Rusch, S. L., and Kendall, D. A. (1996) The amino-terminal charge and core region hydrophobicity interdependently contribute to the function of signal sequences, J. Biol. Chem. 271, 21579–21582

    Article  CAS  Google Scholar 

  • Jones, J. D., McKnight, C. J., and Gierasch, L. M. (1990) Biophysical studies of signal peptides: Implications for signal peptide functions and the involvement of lipid in protein transport, J. Bioenerg. Biomembr. 22, 213–222

    Article  CAS  Google Scholar 

  • Kaufmann, A., Manting, E. H., Veenendaal, A. K. J., Driessen, A. J. M., and van der Does, C. (1999) Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE, Biochemistry 38, 9115–9125

    Article  CAS  Google Scholar 

  • Kendall, D. A., Bock, S. C., and Kaiser, E. T. (1986) Idealization of the hydrophobic segment of the alkaline phosphatase signal peptide, Nature 321, 706–708

    Article  CAS  Google Scholar 

  • Kimura, E., Akita, M., Matsuyama, S-I., and Mizushima, S. (1991) Determination of a region in SecA that interacts with presecretory proteins in Escherichia coli, J. Biol. Chem. 266, 6600–6606

    CAS  Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680–685

    Article  CAS  Google Scholar 

  • Lanzetta, P. A., Alvarez, L. J., Reinach, P. S., and Candia, O. A. (1979) An improved assay for nanomole amounts of inorganic phosphate, Anal. Biochem. 100, 95–97

    Article  CAS  Google Scholar 

  • Randall, L. L., Topping, T. B., Hardy, S. J., Pavlov, M. Y., Freistroffer, D. V., and Ehrenberg, M. (1997) Binding of SecB to ribosome-bound polypeptides has the same characteristics as binding to full-length, denatured proteins, Proc. Natl. Acad. Sci. U.S.A. 94, 802–807

    CAS  Google Scholar 

  • Lill, R., Dowhan, W., and Wickner, W. (1990) The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domain of precursor proteins, Cell 60, 271–280

    Article  CAS  Google Scholar 

  • Matsuyama, S., Fujita, Y., and Mizushima, S. (1993) SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli, EMBO J. 12, 265–270

    CAS  Google Scholar 

  • McKnight, C. J., Briggs, M. S., and Gierasch, L. M. (1989) Functional and nonfunctional LamB signal sequences can be distinguished by their biophysical properties, J. Biol. Chem. 264, 17293–17297

    CAS  Google Scholar 

  • Miller, A., Wang, L., and Kendall, D. A. (1998) Synthetic signal peptides specifically recognize SecA and stimulate ATPase activity in the absence of preprotein, J. Biol. Chem. 273, 11409–11412

    CAS  Google Scholar 

  • Mitchell, C., and Oliver, D. (1993) Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase, Mol. Microbiol. 10, 483–497

    CAS  Google Scholar 

  • Mori, H., Araki,.M., Hikita, C., Tagaya, M., and Mizushima, S. (1997) The hydrophobic region of signal peptides is involved in the interaction with membrane-bound SecA, Biochim. Biophys. Acta 1326, 23–36

    CAS  Google Scholar 

  • Phoenix, D. A., Kusters, R., Hikita, C., Mizushima, S., and de Kruijff, B. (1993) OmpF-Lpp signal sequence mutants with varying charge hydrophobicity ratios provide evidence for a phosphatidylglycerol-signal sequence interaction during protein translocation across the Escherichia coli inner membrane, J. Biol. Chem. 268, 17069–17073

    CAS  Google Scholar 

  • Sasaki, S., Matsuyama, S., and Mizushima, S. (1990) In vitro kinetic analysis of the role of the positive charge at the amino-terminal region of signal peptides in translocation of secretory protein across the cytoplasmic membrane in Escherichia coli, J. Biol. Chem. 265, 4358–4363

    CAS  Google Scholar 

  • Schiebel, E., Driessen, A. J. M., Hartl, F.-U., and Wickner, W. (1991) ΔμH-and ATP function at different steps of the catalytic cycle of preprotein translocase, Cell 64, 927–939

    Article  CAS  Google Scholar 

  • Shinkai, A., Mei, L. H., Tokuda, H., and Mizushima, S. (1991) The conformation of SecA, as revealed by its protease sensitivity, is altered upon interaction with ATP, presecretory proteins, everted membrane vesicles, and phospholipids, J. Biol. Chem. 266, 5827–5833

    CAS  Google Scholar 

  • Seligman, S. J. (1993) Radiolabelling of synthetic peptides by acetylation of the N-terminal amino group, Anal. Biochem. 211, 324–325

    Article  CAS  Google Scholar 

  • Synders, S., Ramamurthy, V., and Oliver, D. (1997) Identification of a region of interaction between Escherichia coli SecA and SecY proteins, J. Biol. Chem. 272, 11302–11306

    Google Scholar 

  • Taura, T., Baba, T., Akiyama, Y., and Ito, K. (1993) Determinants of the quantity of the stable SecY complex in the Escherichia coli cell, J. Bacteriol. 175, 7771–7775

    CAS  Google Scholar 

  • Ulbrandt, N. D., London, E., and Oliver, D. B. (1992) Deep penetration of a portion of Escherichia coli SecA protein into model membranes is promoted by anionic phospholipids and by partial unfolding, J. Biol. Chem. 267, 15184–15192

    CAS  Google Scholar 

  • Vlasuk, G. P., Inouye, S., Ito, H., Itakura, K., and Inouye, M. (1983) Effects of the complete removal of basic amino acid residues from the signal peptide on secretion of lipoprotein in Escherichia coli, J. Biol. Chem. 258,7141–7148

    CAS  Google Scholar 

  • von Heijne, G. (1985) Signal sequences. The limits of variation, J. Mol. Biol. 184, 99–105

    Google Scholar 

  • Wickner, W., and Leonard, M. R. (1996) Escherichia coli preprotein translocase, J. Biol. Chem. 271, 29514–29516

    CAS  Google Scholar 

  • Yamane, K., and Mizushima, S. (1988) Introduction of basic amino acid residues after the signal peptide inhibits protein translocation across the cytoplasmic membrane of Escherichia coli, J. Biol. Chem. 263, 19690–19696

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Miller, A., Wang, L., Kendall, D.A. (2002). Model Signal Peptides: Probes of Molecular Interactions During Protein Secretion. In: Self-Assembling Peptide Systems in Biology, Medicine and Engineering. Springer, Dordrecht. https://doi.org/10.1007/0-306-46890-5_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-46890-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7090-1

  • Online ISBN: 978-0-306-46890-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics