Skip to main content

Engineering Self-Assembly of Peptides by Amphiphilic 2D Motifs: α-to-β Transitions of Peptides

  • Chapter
Self-Assembling Peptide Systems in Biology, Medicine and Engineering
  • 237 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taubes, G.: Misfolding the way to disease, Science 271 (1996), 1492–1492.

    Google Scholar 

  2. Mihara, H. and Takahashi, Y.: Engineering peptides and proteins that undergo α-to-β transitions, Curr: Opin. Srruct. Biol. 7 (1997), 501–508.

    CAS  Google Scholar 

  3. Kelly, J. W.: The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways, Cur,: Opin. Struct. Biol. 8 (1998), 101–106.

    Article  CAS  Google Scholar 

  4. Fink, A. L.: Protein aggregation: folding aggregates, inclusion bodies and amyloid, Fold. Des. 3 (1998). R9–R23.

    Article  CAS  Google Scholar 

  5. Dobson, C. M.: Protein misfolding, evolution and disease, Trends Biochem. Sci. 24 (1999). 329–332.

    Article  CAS  Google Scholar 

  6. Prusiner, S. B.: Prion diseases and the BSE crisis, Science 278 (1997), 245–251.

    Article  CAS  Google Scholar 

  7. Harrison, P. M., Bamborough, P., Daggett, V., Prusiner, S. B., and Cohen, E E.: The prion folding problem, Curr: Opin. Strucr. Biol. 7 (1997), 53–59.

    CAS  Google Scholar 

  8. Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., and Wüthrich, K.: NMR structure of the mouse prion protein domain PrP(121–231), Nature 382 (1996), 180–182.

    Article  CAS  Google Scholar 

  9. Lansbury, P. T., Jr.: A reductionist view of Alzheimer’s disease, Acc. Chem. Res. 29 (1996), 317–321.

    Article  CAS  Google Scholar 

  10. Selkoe, D. J.: Amyloid β-protein and the genetics of Alzheimer’s disease, J. Biol. Chem. 271 (1996), 18295–18298.

    CAS  Google Scholar 

  11. Forloni, G., Tagliavini, F., Bugiani, O., and Salmona, M.: Amyloid in Alzheimer’s disease and prion-related encephalopathies: studies with synthetic peptides, Prog. Neurobioi. 49 (1996). 287–315.

    CAS  Google Scholar 

  12. Kuwata, K., Hoshino, M.. Era, S., Batt, C., and Goto, Y.: α→β Transition of β-lactoglobulin as evidenced by hetetronuclear NMR, J. Mol. Biol. 283 (1998), 731–739.

    Article  CAS  Google Scholar 

  13. Kuwajima, K., Yamaya, H., and Sugai, S.: The burst-phase intermediate in the refolding of β-lactoglobulin studied by stopped-flow circular dichroism and absorption spectroscopy, J. Mol. Biol. 264 (1996). 806–822.

    Article  CAS  Google Scholar 

  14. Minor, D. L., Jr. and Kim, P. S.: Context-dependent secondary structure formation of a designed protein sequence, Nature 380 (1996). 730–734.

    Article  CAS  Google Scholar 

  15. Dalal, S., Balasubramanian, S., and Regan, L.: Protein alchemy: changing β-sheet into α-helix, Nature Struct. Biol. 4 (1997), 548–552.

    Article  CAS  Google Scholar 

  16. Betz, S. E, Raleigh, D. P., and DeGrado, W. E: De novo protein design: from molten globules to native-like states, Curr Opin. Struct. Biol. 3 (1993). 601–610.

    Article  CAS  Google Scholar 

  17. Betz, S. F., Bryson, J. W., and DeGrado, W. F.: Native-like and structurally characterized designed α-helical bundles, Curr Opin. Srruct. Biol. 5 (1993, 457–463.

    Google Scholar 

  18. Kaiser E. T. and Kézdy, E J.: Amphiphilic secondary structure: design of peptide hormones, Science 223 (1984), 249–255.

    CAS  Google Scholar 

  19. Schneider, J. P. and Kelly, J. W.: Templates that induce α-helical, β-sheet, and loop conformations, Chem. Rev. 95 (1995), 2169–2187.

    Article  CAS  Google Scholar 

  20. Choo, D. W., Schneider, J. P., Graciani, N. R., and Kelly, J. W.: Nucleated antiparallel β-sheet that folds and undergoes self-assembly: a template promoted folding strategy toward controlled molecular architectures, Macromolecules 29 (1996), 355–366.

    Article  CAS  Google Scholar 

  21. Aggeli, A., Bell, M., Boden, N., Keen, J. N., Knowles, P. E, McLeish, T. C. B., Pitkeathly, M., and Radford, S. E.: Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes, Nature 386 (1997). 259–262.

    Article  CAS  Google Scholar 

  22. Zhang, S. and Rich, A.: Direct conversion of an oligopeptide from a β-sheet to an α-helix: a model for amyloid formation, Proc. Natl. Acad. Sci. USA 94 (1997), 23–28.

    CAS  Google Scholar 

  23. Mutter, M. and Hersperger, R.: Peptides as conformational switch: medium-induced conformational transitions of designed peptides, Angew. Chem. Int. Ed. Engl. 29 (1990), 185–187.

    Article  Google Scholar 

  24. Ono, S., Kameda, N., Yoshimura, T., Shimasaki, C., Tsukuromichi, E., Mihara, H., and Nishino, N.: Super-secondary structure with amphiphilic β-strands probed by pyrenylalanine, Chem. Lett. (1993, 965–966.

    Google Scholar 

  25. Mutter, M., Gassmann, R., Buttkus, U., and Altmann, K.-H.: Switch peptides: pH-induced α-helix to β-sheet transitions of bis-amphiphilic oligopeptides, Angew. Chem. Int. Ed. Engl. 20 (1991), 1514–1516.

    Google Scholar 

  26. Takahashi, Y., Ueno, A., and Mihara, H.: Design of a peptide undergoing α-β structural transition and amyloid fibrillogenesis by the introduction of a hydrophobic defect, Chem. Eur J. 4 (1998), 2475–2484.

    Article  CAS  Google Scholar 

  27. Takahashi, Y., Ueno, A., and Mihara, H.: Optimization of hydrophobic domains in peptides that undergo transformation from α-Helix to β-Fibril, Bioorg. Med. Chem. 7 (1999). 177–185.

    CAS  Google Scholar 

  28. Sakamoto, S., Obataya, I., Ueno, A., and Mihara, H.: Regulation of α/β-folding of a designed peptide by haem binding, Chem. Commun. (1999), 1111–1112

    Google Scholar 

  29. Sakamoto, S., Obataya, I., Ueno, A., and Mihara, H.: Effects of amino acids substitution of hydrophobic residues on haem-binding properties of designed two-α-helix peptides, J. Chem. Soc., Perkin Trans. 2 (1999), 2059–2070.

    Google Scholar 

  30. Kohn, W. D., Kay, C. M., Sykes, B. D., and Hodges, R. S.: Metal ion induced folding of a de novo designed coiled-coil peptide, J. Am. Chem. Soc. 120 (1998), 1124–1132.

    Article  CAS  Google Scholar 

  31. Chou, P. Y. and Fasman, G. D.: Prediction of protein conformation, Biochemistry 13 (1974), 222–245.

    CAS  Google Scholar 

  32. Hamasaki, K., Ikeda, H., Nakamura, A., Ueno, A., Toda, E, Suzuki, I., and Osa, T.: Fluorescent sensors of molecular recognition. Modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence, J. Am. Chem. Soc. 115 (1993), 5035–5040.

    Article  CAS  Google Scholar 

  33. Atherton, E. and Sheppard, R. C.: Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, Oxford, 1989.

    Google Scholar 

  34. Harper, J. D. and Lansbury, P. T., Jr.: Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins, Annu. Rev. Biochem. 66 (1997), 385–407.

    Article  CAS  Google Scholar 

  35. Zhang, H., Stöckel, J., Mehlhorn, I., Groth, D., Baldwin, M. A,, Prusiner, S. B., James, T. L., and Cohen, F. E.: Physical studies of conformational plasticity in a recombinant prion protein, Biochemistry 36 (1997), 3543–3553.

    CAS  Google Scholar 

  36. Surewicz, W. K., Mantsch, H. H., and Chapman, D.: Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment, Biochemistry 32 (1993), 389–394.

    Article  CAS  Google Scholar 

  37. Wood, S. J., Maleeff, B., Hart, T., and Wetzel, R.: Physical, morphological and functional differences between pH 5.8 and 7.4 aggregates of the Alzheimer’s amyloid peptide Aβ, J. Mol. Biol. 256 (1996). 870–877.

    Article  CAS  Google Scholar 

  38. Nguyen, J. T., Inouye, H., Baldwin, M. A., Fletterick, R. J., Cohen, E E., Prusiner, S. B., and Kirschner, D. A.: X-ray diffraction of scrapie prion rods and PrP peptides, J. Mol. Biol. 252 (1995), 412–422.

    Article  CAS  Google Scholar 

  39. LeVine, H., III: Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution, Prorein Sci. 2 (1993), 404–410.

    CAS  Google Scholar 

  40. Klunk, W. E., Pettegrew, J. W., and Abraham, D. J.: Quantitative evaluation of Congo red binding to amyloid-like proteins with a beta-pleated sheet conformation, J. Histochem. Cyrochem. 37 (1989), 1273–1281.

    CAS  Google Scholar 

  41. Wood, S. J., MacKenzie, L., Maleeff, B., Hurle, M. R., and Wetzel R.: Selective inhibition of Ab fibril formation, J. Biol. Chem. 271 (1996), 4086–4092.

    Article  CAS  Google Scholar 

  42. Santoro, M. M. and Bolen, D. W.: Unfolding free energy changes determined by the linear alpha-chymotrypsin using different denaturants, Biochemistry 27 (1988), 8063–8088.

    Article  CAS  Google Scholar 

  43. Blow, D. M., Chayen, N. E., Lloyd, L. E, and Saridakis, E.: Control of nucleation of protein crystals, Protein Sci. 3 (1994), 1638–1643.

    Article  CAS  Google Scholar 

  44. Eaton, W. A. and Hofrichter, J.: The biophysics of sickle cell hydroxyurea therapy, Science 268 (1995), 1142–1143.

    CAS  Google Scholar 

  45. Veronese, A. and Luisi, P. L.: An autocatalytic reaction leading to spontaneously assembled phosphatidyl nucleoside giant vesicles, J. Am. Chem. Soc. 120 (1998), 2662–2663.

    Article  CAS  Google Scholar 

  46. Watzky, M. A. and Finke, R. G.: Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth, J. Am. Chem. Soc. 119 (1997), 10382–10400.

    Article  CAS  Google Scholar 

  47. Booth, D. R., Sunde, M., Bellotti, V., Robinson, C. V., Hutchinson, W. L., Fraser, P. E., Hawkins, P. N., Dobson, C. M., Radford, S. E., Blake, C. C. E, and Pepys, M. B.: Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis, Nature 385 (1997). 787–793.

    Article  CAS  Google Scholar 

  48. Mestel, R.: Putting prions to the test, Science 273 (1996). 184–189.

    CAS  Google Scholar 

  49. Lundberg, K. M., Stenland, C. J., Cohen, E E., Prusiner, S. B., and Millhauser, G. L.: Kinetics and mechanism of amyloid formation by the prion protein H1 peptide as determined by time-dependent ESR, Chem. Biol. 4 (l997), 345–355.

    Article  Google Scholar 

  50. Hargrove, M. S. and Olson, J. S.: Stability of holomyoglobin is determined by heme affinity, Biochemistry 35 (1996), 11310–11318.

    CAS  Google Scholar 

  51. Fisher, W. R., Taniushi H., and Anfinsen, C. J.: On the role of heme in the formation of the structure of cytochrome c, J. Biol. Chem. 248 (1973), 3188–3195.

    CAS  Google Scholar 

  52. Moore, C. D., AI-Misky 0. N., and Lecomte, J. T.: Similarities in structure between holocytochrome b5 and apocytochrome b5: NMR studies of the histidine residues, Biochemistry 30 (1991), 835743365

    Google Scholar 

  53. Feng, Y. Q. and Sligar, S. G.: Effect of heme binding on the structure and stability of Escherichia coli apocytochrome 6562, Biochemistry 30 (1991) 10150–10155.

    CAS  Google Scholar 

  54. Sharp, R. E., Moser, C. C., Rabanal, F., and Dutton, P. L.: Design, synthesis, and characterization of a photoactivatable flavocytochrome molecularmaquette, Proc. Natl. Acad. Sci. USA 95 (1998) 10465–10470.

    Article  CAS  Google Scholar 

  55. Rau, H. K., DeJonge, N., and Haehnel, W.: Modular synthesis of de novo-designed metalloproteins for light-induced electron transfer, Proc. Natl. Acud. Sci. USA 95 (1998) 11526–11531.

    Article  CAS  Google Scholar 

  56. Sakamoto, S., Sakurai, S., Ueno, A., and Mihara, H.: Haem binding and catalytic activity of two-helix peptide annealed by trifluoroethanol, Chem. Commun. (1997). 1221–1222.

    Google Scholar 

  57. Sakamoto, S., Ueno, A., and Mihara, H.: Molecular assembly of two-β-helix peptide induced by haem binding, Chem. Commun. (1998) 1073–1074.

    Google Scholar 

  58. Sakamoto, S., Ueno, A., and Mihara, H.: Design and synthesis of haem-binding peptides. Relationship between haem-binding properties and catalytic activities, J. Chem. Soc., Perkin Trans. 2 (1998), 2395–2404.

    Google Scholar 

  59. Sasaki, T. and Kaiser, E. T.: Helichrome: Synthesis and enzymatic activity of a designed hemeprotein, J. Am. Chem. Soc. 111 (1989). 380–381.

    Article  CAS  Google Scholar 

  60. Mihara, H., Haruta, Y., Sakamoto, S., Nishino, N., and Aoyagi, H.: Chiral assembly ofporphyrins regulated by amphiphilic-helix peptides, Chem. Lett. (1996), 1–2.

    Google Scholar 

  61. Mihara, H., Tomizaki, K., Fujimoto, T., Sakamoto, S., Aoyagi, H., and Nishino, N.: Artificial membrane protein functionalized with electron transfer system, Chem. Lett. (1996), 187–188.

    Google Scholar 

  62. Nastri, E, Lombardi, A., Morelli, G., Maglio, O., D’Auria, G., Pedone, C., and Pavone, V.: Hemoprotein models based on a convalent helix-heme-helix sandwich: I. Design, synthesis, and characterization, Chem. Eur: J. 3 (1997). 340–349.

    CAS  Google Scholar 

  63. Zhou, N. E., Zhu, B.-Y., Kay C. M., and Hodges, R. S.: The two-stranded α-helical coiled coil is an ideal model for studying protein stability and subunit interactions, Biopolymers 32 (1992), 419–426.

    Article  CAS  Google Scholar 

  64. Scholtz, J. M., Qian, H., York, E. J., Stewart, J. M., and Baldwin, R. L.: Parameters of helix-coil transition theory foralanine-based peptides of varying chain lengths in water, Biopolymers 31 (1991), 1463–1470.

    Article  CAS  Google Scholar 

  65. Tanford, C.: The interpretation of hydrogen ion titration curves of proteins, Adv. Protein Chem. 17 (1961), 69–165.

    Google Scholar 

  66. Engelman, D. M., Steitz, T. A., and Goldman, A.: Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins, Ann. Rev. Biophys. Biomol. Struct. 15 (1986), 321–353.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mihara, H., Takahashi, Y., Obataya, I., Sakamoto, S. (2002). Engineering Self-Assembly of Peptides by Amphiphilic 2D Motifs: α-to-β Transitions of Peptides. In: Self-Assembling Peptide Systems in Biology, Medicine and Engineering. Springer, Dordrecht. https://doi.org/10.1007/0-306-46890-5_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-46890-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7090-1

  • Online ISBN: 978-0-306-46890-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics