Skip to main content

Exploiting Peptide Self-assembly to Engineer Novel Biopolymers: Tapes, Ribbons, Fibrils and Fibres

  • Chapter
Self-Assembling Peptide Systems in Biology, Medicine and Engineering

Abstract

A generic model is presented for the self-assembly of chiral units into intrinsically twisted tapes, ribbons, fibrils and fibres. Rationally designed self-assembling β-strand-forming peptides are shown to behave as chiral rod-like objects, exhibiting the entire hierarchy of these structures, which can form nematic fluids or gels. These observations provide new insight into the generic self-assembling properties of ?-sheets, and the factors governing the structures and extraordinary stability of pathological amyloid fibrils in vivo. More generally, they provide a prescription of routes to novel tape and fibril-like macromolecules based on a wide variety of self-assembling chiral units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artsaenko, O., Kettig, B., Fiedler, K., Conrad, K. & During, K. (1998) Potato tubers as a biofactory for recombinant antibodies, Molecular Breeding 4, 313–319.

    Article  CAS  Google Scholar 

  2. Urry, D. (1999) Elastic molecular machines in metabolism and soft-tissue restoration., Trends in Biotechnology 17, 249–257.

    Article  CAS  Google Scholar 

  3. Panitch, A, Yamaoka, T., Fournier, M. J., Mason, T. L. & Tirrell, D. A. (1999) Design and biosynthesis of elastin-like artificial extracellular matrix proteins containing periodically spaced fibronectin CS5 domains, Macromolecules 32, 1701–1703.

    CAS  Google Scholar 

  4. Krejchi, M. T., Atkins, E. D. T., Waddon, A. J., Fournier, J., Mason, T. L. & Tirrell, D. A (1994) Chemical sequence control of beta-sheetassembly in macromolecular crystals of periodic polypeptides, Science 265, 1427–1432.

    CAS  Google Scholar 

  5. Zhang, S.G. & Altman, M. (1999) Peptideself-assembly in functionalpolymer science and engineering, Reactive & functional polymers 41, 91–102.

    CAS  Google Scholar 

  6. Aggeli, A., Bell, M., Boden, N., Keen, J. N., Knowles, P. F., McLeish, T. C. B., Pitkeathly, M. & Radford, S. E. (1997) Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes, Nature 386, 259–262.

    Article  CAS  Google Scholar 

  7. Aggeli, A., Bell, M., Boden, N., Harding, R., McLeish, T. C. B., Nyrkova, I., Radford, S. E. & Semenov, A (2000) Exploiting protein folding and misfolding to engineer novel nanostmctured materials, The Biochemist 22, 10–14.

    CAS  Google Scholar 

  8. Israelachvili, J. N. (1985) Intermolecular and Surface Forces (Academic Press, London).

    Google Scholar 

  9. Nyrkova, I., Semenov, A N., Aggeli, A., Bell, M., Boden, N. & McLeish, T. C. B. (2000) Self-assembly and structure transformations in living polymers forming fibrils, Eur. Phys.J.B in press.

    Google Scholar 

  10. Nykova, I., Semenov, A, Aggeli, A. & Boden, N. Fibril stability in twisted tape systems: a new kind of micelle found in solutions of self-assembled peptide β-sheet tapes, Eur. Phys. J. B in press.

    Google Scholar 

  11. Aggeli, A,, Bell, M., Boden, N., Keen, J. N., McLeish, T. C. B., Nyrkova, I., Radford, S. E. & Semenov, A. (1997) Engineering of peptide beta-sheet nanotapes, Journal of Materials Chemistry 7, 1135–1145.

    Article  CAS  Google Scholar 

  12. Terzi, E., Holzemann, G. & Seelig, J. (1995) Self association of beta-amyloid peptide (1–40) in solution and binding to lipid membranes, Journal of Molecular Biology 252, 633–642.

    Article  CAS  Google Scholar 

  13. Perutz, M. F., Johnson, T., Suzuki, M. & Finch, J. T. (1994) Glutamine repeats as polar zippers: Their possible role in inherited neurodegenerative diseases, Proc. Natl. Acad. Sci USA 91, 5355–5358.

    CAS  Google Scholar 

  14. Manning, M. C., Illangasekare, M. & Woody, R. W. (1988) Circular dichroism studies of distorted alpha-helices, twisted beta-sheets and beta-turns, Biophysical Chemistry 31, 77–86.

    Article  CAS  Google Scholar 

  15. Grishina, I. B. & Woody, R. W. (1994) Contributions of Tryptophan Side Chains to the Circular Dichroism of Globular Proteins: Exciton Couplets and Coupled Oscillators, Faraday Discussions 99, 245–262.

    Article  CAS  Google Scholar 

  16. Chothia, C. (1973) Conformation of twisted beta-pleated sheets in proteins, Journal of Molecular Biology 75, 295–302.

    Article  CAS  Google Scholar 

  17. Dobb, M. G., Johnson, D. J. & Saville, B. P. (1977) Supramolecular structure of a high-modulus polyaromatic fiber (Kevlar 49), Journal of polymer Science 15, 2201–2211.

    CAS  Google Scholar 

  18. Semenov, A. N. & Khokhlov, A. R. (1988) Statistical physics of liquid-crystalline polymers, Sov. Phys. Usp. 31.

    Google Scholar 

  19. Sunde, M. & Blake, C. F. (1998) From the globular to the fibrous state: protein structure and structural conversion in amyloid formation, Quarterly Review of Biophysics 31, 1–39.

    Article  CAS  Google Scholar 

  20. Kirschner, D. A., Elliott-Bryant, R., Szumowski, K. E., Gonnerman, W. A., Kindy, M. S., Sipe, J. D. & Cathcart, E. S. (1998) In vitro amyloid fibril formation by synthetic peptides corresponding to the amino terminus of apoSAA isoforms from amyloid-susceptible and amyloid-resistant mice, Journal of Structural Biology 124, 88–98.

    Article  CAS  Google Scholar 

  21. Seilheimer, B., Bohrmann, B., Bondolfi, L., Muller, F., Stuber, D. & Dobeli, H. (1997) The Toxicity of the Alzheimer’s Beta-Amyloid Peptide Correlates with a Distinct Fibre Morphology, Journal of Structural Biology d119, 59–71.

    Google Scholar 

  22. Jimenez, J., Guijarro, J., Orlova, E., Zurdo, J., Dobson, C., Sunde, M. & Saibil, H. R. (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing, The EMBO Journal 18, 815–821.

    CAS  Google Scholar 

  23. Lim, A., Saderolm, M. J., Makhov, A.M., Kroll, M., Yan, Y., Perera, L., Griffith, J.D. & Erickson, B. W. (1998) Engineering of betabellin-15D: a 64 residue beta sheet protein that forms long narrow multimeric fibrils, Protein Science 7, 1545–1554.

    Article  CAS  Google Scholar 

  24. Harper, J. & Lansbury, P. (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: Mechanistic Truths and Physiological Consequences of the Time-dependence Solubility of Amyloid Proteins, Annual Review of Biochemistry 66, 385–407.

    Article  CAS  Google Scholar 

  25. Byrom, D. (1991) Biomatertals: Novel materials from biological sources (Stockton Press).

    Google Scholar 

  26. Eaton, W. A. & Hofrichter, J. (1990) in Advances in Protein Chemistry (Academic Press, Inc., San Diego), Vol. 40.

    Google Scholar 

  27. Terech, P. & Weiss; R. G. (1997) Low molecular mass gelators of organic liquids and the properties of their gels, Chemical Reviews 97, 3133–3159.

    Article  CAS  Google Scholar 

  28. Oda, R., Huc, I., Candau, S. & MacKintosh, F. C. (1999) Tuning bilayer twist using chiral counterions, Nature 399, 566–569.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Aggeli, A. et al. (2002). Exploiting Peptide Self-assembly to Engineer Novel Biopolymers: Tapes, Ribbons, Fibrils and Fibres. In: Self-Assembling Peptide Systems in Biology, Medicine and Engineering. Springer, Dordrecht. https://doi.org/10.1007/0-306-46890-5_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-46890-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7090-1

  • Online ISBN: 978-0-306-46890-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics