Skip to main content

Building a Bridge between G-Protein-Coupled Receptor Modelling, Protein Crystallography and 3D QSAR Studies for Ligand Design

  • Chapter
3D QSAR in Drug Design

Part of the book series: Three-Dimensional Quantitative Structure Activity Relationships ((QSAR,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck-Sickinger, A.G., Structural characterization and binding sites of G protein-coupled receptors, Drug Discov. Today, 1 (1996) 502–513.

    CAS  Google Scholar 

  2. Findlay, J.B.C. and Pappin, D.J.C., The opsin family of proteins, Biochem. J., 238 (1986) 625–642.

    CAS  Google Scholar 

  3. Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E. and Downing, K.H., Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy, J. Mol. Biol., 213 (1990) 899–929.

    CAS  Google Scholar 

  4. Hoflack, J., Trumpp-Kallmeyer, S. and Hibert, M., Molecular modeling of G protein-coupled receptors, In Kubinyi, H. (Ed.) 3D QSAR in drug design: Theory, methods and applications, ESCOM, Leiden, The Netherlands, 1993, pp. 355–372.

    Google Scholar 

  5. Strader, C.D., Fong, T.M., Tota, M.R., Underwood, D. and Dixon, R.A.F., Structure and function of G protein-coupled receptors, Annu. Rev. Biochem., 63 (1994) 101–132.

    Article  CAS  Google Scholar 

  6. Probst, W.C., Snyder, L.A., Schuster, D.I., Brosius, J. and Sealfon, S.C., Sequence alignment of the G protein-coupled receptor superfamily, DNA Cell Biol.. 11 (1992) 1–20.

    Article  CAS  Google Scholar 

  7. Lefkowitz, R., Cotecchia, S., Samama, P. and Costa, T., Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins, Trends Pharmacol. Sci., 14 (1993) 303–307.

    Article  CAS  Google Scholar 

  8. Strader, C.D., Fong, T.M., Graziano, M.P. and Tota, M.R., The family of G protein-coupled receptors, FASEB J., 9 (1995) 745–754.

    CAS  Google Scholar 

  9. Gether, U., Johansen, T.E., Snider, R.M., Lowe III, J.A., Nakanishi, S. and Schwartz, T.W., Different binding epitopes on the NK1 receptor for substance P and a non-peptide antagonist. Nature, 362 (1993) 345–348.

    Article  CAS  Google Scholar 

  10. Rosenkilde, M.M., Cahir, M., Gether, U., Hjorth, S.A. and Schwartz, T.W., Mutations along transmembrane segment II of the NK-1 receptor affect substance P competition with non-peptide antagonists but not substance P binding, J. Biol. Chem., 269 (1994) 28160–28164.

    CAS  Google Scholar 

  11. Sautel, M., Rudolf, K., Wittneben, H., Herzog, H., Martinez, R., Munoz, M., Eberlein, W., Engle, W., Walker, P. and Beck-Sickinger, A.G., Neuropeptide Y and the non-peptide antagonist BIBP 3226 share an overlapping binding site at the human Y1 receptor, Mol. Pharmacol., 50 (1996) 285–292.

    CAS  Google Scholar 

  12. Schwartz., T.W. and Wells, T.N.C., Is there a ‘lock’ for all agonist ‘keys’ in 7TM receptors?, Trends Pharmacol. Sci., 17 (1996) 213–216.

    CAS  Google Scholar 

  13. Samuna, P., Cotecchia, S., Costa, T. and Lefkowitz, R.J., A Mutation-induced activated state of the b2-adrenergic receptor, J. Biol. Chem., 268 (1993) 4625–4636.

    Google Scholar 

  14. Kuipers, W., van Wijngaaden, I. and Ijzerman, A.P., A model of the serotonin 5-HTIA receptor: Agonist and antagonist binding sites. Drug Des. Discuss., 11 (1994) 231–249.

    CAS  Google Scholar 

  15. Schertler, G.F.X., Villa, C. and Henderson, R., Projection structure of rhodopsin, Nature, 362 (1993) 770–772.

    Article  CAS  Google Scholar 

  16. Soppa, J., Two hypotheses—one answer: Sequence comparison does not support an evolutionary link between halobacterial retinal proteins including bacleriorhodopsin and eukaryotic G protin-coupled receptors, FEBS Lett., 342 (1994) 7–11.

    Article  CAS  Google Scholar 

  17. Donnelly, D., Findlay, J.B.C. and Blundell, T.L., The evolution and structure of aminergic G protein-coupled receptors, Receptors Channels, 2 (1994) 61–78.

    CAS  Google Scholar 

  18. Baldwin, J.M., The probable arrangement of the helices in G protein-coupled receptors, EMBO J., 12 (1993) 1693–1703.

    CAS  Google Scholar 

  19. Hoflack, J., Trumpp-Kallmeyer, S. and Hibert, M., Re-evaluation of bacteriorhodopsin as a model for G protein-coupled receptors, Trends Pharmacol. Sci., 15 (1994) 7–9.

    Article  CAS  Google Scholar 

  20. Rost, B., Casadio, R., Fariselli, P. and Sander, C., Transmembrane helices predicted at 95% accuracy, Protein Sci., 4 (1995) 521–533.

    CAS  Google Scholar 

  21. Nordvall, G. and Hacksell, U., Binding-site modeling of the muscarinic m1 receptor: A combination of homology-based and indirect approaches, J. Med. Chem., 36 (1993) 967–976.

    Article  CAS  Google Scholar 

  22. Hutchins, C., Three-dimensional models of the D 1 and D 2 dopamine receptors, Endocrine J., 2 (1994) 7–23.

    CAS  Google Scholar 

  23. Batlle, M., Campillo, M., Giraldo, J. and Pardo, L., Computer-aided drug designof selective 5-hydroxytryptamine 1A receptor ligands using a three-dimensional model. In Sanz, F., Giraldo, J. and Manaut, F. (Eds.) QSAR and molecular modeling: Concepts, computational tools and biological applications, J.R. Prous Science Publishers, Barcelona, Spain, 1995, pp. 541–544.

    Google Scholar 

  24. Bourdon, H., Trumpp-Kallmeyer, S., Hoflack, J., Hibert, M. and Wermuth, C.G., Modeling of muscarinic M1 agonists: Study of their interaction with the M1 receptor, In Sanz, F., Giraldo, J., and Manaut, F. (Eds.) QSAR and molecular modeling: Concepts, computational tools and biological applications, J.R. Prous Science Publishers, Barcelona, Spain, 1995, pp. 514–518.

    Google Scholar 

  25. Burbach, J.P.H. and Meijer, O.C., The structure of neuropeptide receptors, Eur. J. Pharmacol.-Mol. Pharmacol., 227 (1992) 1–18.

    CAS  Google Scholar 

  26. Chou, K.-C., Carlacci, L., Maggiora, G.M., Parodi, L.A. and Schulz, M.W., An energy-based approach to packing the 7-helix bundle of bacterirhodopsin, Protein Sci., 1 (1992) 810–827.

    Article  CAS  Google Scholar 

  27. Cronet, P., Sander, C. and Vriend, G., Modeling of transmembrane seven helix bundles, Protein Eng., 6 (1993) 59–64.

    CAS  Google Scholar 

  28. Dahl, S.G., Edvardsen, I. and Sylte, I., Molecular dynamics of dopamine at the D 2 receptor, Proc. Natl. Acad. Sci. U.S.A., 88 (1991) 8111–8115.

    CAS  Google Scholar 

  29. De Benedetti, P.G., Menziani, M.C., Fanelli, F. and Cocchi, M., The heuristic-direct approach to QSAR analysis of ligand-G-protein coupled receptor complex, In Sanz, F., Giraldo, J., and Manaut, F. (Eds.) QSAR and molecular modeling: Concepts, computational tools and biological applications, J.R. Prous Science Publishers, Barcelona, Spain, 1995, pp. 526–527.

    Google Scholar 

  30. Dijkstra, G.D.H., Tulp, M.T.M., Hermkens, P.H.H., van Maarseveen, J.H., Scheeren, H.W. and Kruse, C.G., Synthesis and receptor-affinity profile of N-hydroxytryptamine derivatives for serotonin and tryptamine receptors: A molecular-modeling study, Recl. Trav. Chim. Pays-Bas., 112 (1993) 131–136.

    CAS  Google Scholar 

  31. Edvardsen, O., Sylte, I. and Dahl, S.G., Molecular dynamics of serotonin and ritanserin interacting with the 5-HT2, Mol. Brain Res., 14 (1992) 166–178.

    Article  CAS  Google Scholar 

  32. Egner, U., Gerbling, K.P., Hoyer, G.-A., Kruger, G. and Wegner, P., Design of inhibitors of photosystem II using a model of the D1 protein, Pestic. Sci., 47 (1996) 145–158.

    Article  CAS  Google Scholar 

  33. Fanelli, F., Menziani, M.C., Cocchi, M. and De Benedetti, P.G., Comparative molecular dynamics study of the seven-helix bundle arrangement of G protein-coupled receptors, J. Mol. Struct. (Theochem), 333 (1995) 49–69.

    Article  CAS  Google Scholar 

  34. Findlay, J.B.C. and Donnelly, D. (Ed.), The superfamily: molecular modeling, Springer-Verlag, Berlin, Germany, 1993, pp. 17–31.

    Google Scholar 

  35. Grotzinger, J., Engels, M., Jacoby, E., Wollmer, A. and Strassburger, W., A model for the C5a receptor and for its interaction with the ligand, Protein Eng., 4 (1991) 767–771.

    CAS  Google Scholar 

  36. Hibert, M., Hoflack, J., Trumpp-Kallmeyer, S., Paquet, J.-L., Leppik, R., Mouillac, B., Chini, B., Barberis, C. and Jard, S. (Ed.), Three-dimensional structure of G protein-coupled receptors: from speculations to facts, Elsevier Science, Amsterdam, The Netherlands, 1996.

    Google Scholar 

  37. Humblet, C., Lunney, E.A. and Mirzadegan, T. (Ed.), Docking ligands in the receptor cavity: What have we learned?, ESCOM, Leiden, The Netherlands, 1993, pp. 35–43.

    Google Scholar 

  38. Kenakin, T., Receptor conformational induction versus selection: All part of the same energy landscape, Trends Pharmacol. Sci., 17(1996) 190–191.

    Article  CAS  Google Scholar 

  39. Krause, G., Kuhne, R. and Hubel, S. (Ed.), G protein-coupled receptors, glucagon type: How to overcome the alignment/fit dilemma to the bacteriorhodopsin template, J.R. Prous Science Publishers, Barcelona, Spain, 1995, pp. 531–533.

    Google Scholar 

  40. Kuipers, W., Kruse, C.G., van Wijngaarden, I., Standaar, P.J., Tulp, M.T.M., Veldman, N., Spek, A.L. and Ijzerman, A.P., 5-HT 1A -versus D 2 -receptor selectivity of flesinoxan and analogous N4-substituted N1-arylpiperazines, J. Med. Chem., 40 (1997) 300–312.

    Article  CAS  Google Scholar 

  41. Livingstone, C.D., Strange, P.G. and Naylor, L.H., Molecular modeling of D 2 -like dopamine receptors, Biochem. J., 287 (1992) 277–282.

    CAS  Google Scholar 

  42. Luo, X., Zhang, D. and Weinstein. H., Ligand-induced domain motion in the activation mechanism of a G protein-coupled receptor, Protein Engng., 7 (1994) 1441–1448.

    Article  CAS  Google Scholar 

  43. Maloney Huss, K. and Lybrand, T.P., Three-dimensional structure for the β 2 adrenergic receptor protein based on computer modeling studies, J. Mol. Biol., 225 (1992) 859–871.

    CAS  Google Scholar 

  44. Menziani, M.C., Cocchi, M., Fanelli, F. and De Benedetti, P.G., Theoretical QSAR analysis on three dimensional models of the complexes between peptide and non-peptide antagonists with the FT 1 and FT 6 receptors, In Sanz, F., Giraldo, J., and Manaut, F. (Eds.) QSAR and molecular modeling: Concepts, computational tools and biological applications, J.R. Prous Science Publishers, Barcelona, Spain. 1995, pp. 519–525.

    Google Scholar 

  45. Moereels, H. and Leysen, J.E., Novel computational model for the interaction of dopamine with the D 2 receptor, Recept. Channels, 1 (1993) 89–97.

    CAS  Google Scholar 

  46. Nederkoorn, P.H.J., va Lenthe, J.H., van der Goot, H., den Kelder, G.M.D.-O. and Timmerman, H., The agonistic binding site at the histamine H2 receptor: 1. Theoretical investigations of histamine binding to an oligopeptide mimicking a part of the fifth transmembrane α-helix, J. Comput.-Aid. Mol. Design, 10 (1996) 461–478.

    CAS  Google Scholar 

  47. Nero, T.L., lakovidis, D. and Louis, W.J., Molecular modeling of the human β 1 -adrenoceptor. In Sanz, F., Giraldo, J., and Manaut, F. (Eds.) QSAR and molecular modeling: Concepts, computational tools and biological applications, J.R. Prous Science Publishers, Barcelona, Spain, 1995, pp. 528–530.

    Google Scholar 

  48. Pardo, L., Ballesteros, J.A., Osman, R. and Weinstein, H., On the use of the transmembrane domain of the bacteriorhodopsin as a template for modeling the three-dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors, Proc. Natl. Acad. Sci. U.S.A., 89 (1992) 4009–4012.

    CAS  Google Scholar 

  49. Sagara, T., Egashira, H., Okamura, M., Fujii, I., Shimohigashi, Y. and Kanematsu, K., Ligand recognition in mu opioid receptor: Experimentally based modeling of mu opioid receptor binding sites and their testing by ligand docking, Bioorg. Med. Chem., 4 (1996) 2151–2166.

    CAS  Google Scholar 

  50. Sankararamakrishnan, R. and Vishveshwara, S., Characterization of proline-containing α-helix (helix F model of bacteriorhodopsin) by molecular dynamics studies, Proteins: Struct. Fund. Genet., 15 (1993) 26–41.

    Article  CAS  Google Scholar 

  51. Sugden, D., Chong, N.W.S. and Lewis, D.F.V., Structural requirements at the melatonin receptor, Br. J. Pharmacol., 114 (1995) 618–623.

    CAS  Google Scholar 

  52. Sylte, I., Edvardsen, O. and Dahl, S.G., Molecular modeling of UH-301 and 5-HT 1a receptor interactions. Protein Eng., 9 (1996) 149–160.

    Article  CAS  Google Scholar 

  53. Teeter, M.M., Froimowitz, M., Stec, B. and DuRand, C.J., Homology modeling of the dopamine D 2 receptor and its testing by docking of agonists and tricyclic antagonists, J. Med. Chem., 37 (1994) 2874–2888.

    Article  CAS  Google Scholar 

  54. Trumpp-Kallmeyer, S., Chini, B., Mouillac, B., Barberis, C., Hoflack, J. and Hilbert, M., Towards understanding the role of the first extracellular loop for the binding of peptide harmones to G protein-coupled receptors. Pharm. Acta Helv., 70 (1995) 255–262.

    CAS  Google Scholar 

  55. Weinstein, H. and Zhang, D., Receptor models and ligand-induced responses: New insights for structure-activity relations. In Sanz, F., Giraldo, J., and Manaut, F. (Eds.) QSAR and molecular modeling: Concepts, computational tools and biological applications, J.R. Prous Science Publishers, Barcelona, Spain, 1995, pp. 497–507.

    Google Scholar 

  56. Yamamoto, Y., Kamiya, K. and Terao, S., Modeling of human thromboxane A2 receptor and analysis of the receptor-ligand interaction, J. Med. Chem., 36 (1993) 820–825.

    CAS  Google Scholar 

  57. Zhang, S. and Weinstein, H., Signal transduction by a 5-HT 2 receptor: A mechanistic hypothesis from molecular dynamics simulations of the three-dimensional model of the receptor complexed to ligands, J. Med. Chem., 36 (1993) 934–938.

    CAS  Google Scholar 

  58. Baxevanis, A.D., Makalowski, W., Ouellette, B.F.F. and Recipon, H., Web alert protein engineering, Curr. Opinion Biotech., 7 (1996) 462.

    CAS  Google Scholar 

  59. Peitsch, M.C., Herzyk, P., Wells, T.N.C. and Hubbard, R.E., Automated modeling of the transmembrane region of G protein-coupled receptor by Swiss-Model, Receptors Channels, 4 (1996) 161–164.

    CAS  Google Scholar 

  60. Hibert, M.F., Trumpp-Kallmeyer, S., Hoflack, J. and Bruinvels, A., This is not a G protein-coupled receptor, Trends Pharmacol. Sci., 14 (1993) 7–12.

    Article  CAS  Google Scholar 

  61. Rost, B. and Valencia, A., Pitfalls of protein sequence analysis, Curr. Opinion Biotech., 7 (1996) 457–461.

    Article  CAS  Google Scholar 

  62. Navajas, C., Kokkola, T., Poso, A., Honka, N., Gynther, J. and Laitinen, J.T., A rhodopsin-based model for melatonin recognition at its G protein-coupled receptor, Eur. J. Pharmacol., 304 (1996) 173–183.

    Article  CAS  Google Scholar 

  63. Gaillard, P., Carrupt, P.-A., Testa, B. and Schambel, P., Binding of arylpiperazines, (aryloxy) propanolamines, and tetrahydropyridlindoles to the 5-HT 1A receptor: Contribution of the molecular lipophilicity potential to three-dimensional quantitative structure-affinity relationship models, J.Med. Chem., 39(1996) 126–134.

    Article  CAS  Google Scholar 

  64. Dove, S., Kuhne, R. and Schunack, W., H 1 agonistic 2-heteroaryl and 2-phenylhistamines: CoMFA and possible receptor binding sites. In Sanz, F., Giraldo, J., Manaut, F. (Eds.) QSAR and molecular modeling: Concepts, computational tools and biological applications, Proceedings of the 10th European Symposium on Structure-Activity Relationships: QSAR and Molecular Modeling, Barcelona, Spain, September 4–9, 1994, J.R. Prous Science Publishers, Barcelona, 1995, pp. 427–432.

    Google Scholar 

  65. Trumpp-Kallmeyer, S., Hoflack, J., Bruinvels, A. and Hibert, M., Modeling of G-protein-coupled receptors: Application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors, J. Med. Chem., 35 (1992) 3448–3462.

    Article  CAS  Google Scholar 

  66. Yamashita, M., Fukui, H., Sugama, K., Yoshiyuki, H., Ito, S., Mizuguchi, H. and Wada, H., Expression cloning of a cDNA encoding the bovine histamine H 1 receptor, Proc. Natl. Acad. Sci. U.S.A., 88 (1991) 11515–11519.

    CAS  Google Scholar 

  67. Carriere, A., Altomare, C., Barreca, M.L., Contento, A., Carotti, A. and Hansch, C., Papain catalyzed hydrolysis of aryl esters: A comparison of the Hansch, docking and CoMFA methods, Farmaco, 49 (1994)573–585.

    Google Scholar 

  68. Smith, R.N., Hansch, C., Kim, K.H., Omiya, B., Fukumura, G., Selassie, C.D., Jow, P.Y.C., Blaney, J.M. and Langridge, R., The use of crystallography, graphics, and quantitative structure-activity relationships in the analysis of the papain hydrolysis of X-phenyl hippurates, Arch. Biochem. Biophys., 215 (1982)319–328.

    Article  CAS  Google Scholar 

  69. Drenth, J., Kalk, K.H. and Swen, H.M., Binding of chloromethyl ketone substrate analogues to crystalline papain, Biochem., 15 (1976) 3731–3738.

    CAS  Google Scholar 

  70. Watson, K., Mitchell, E.P., Johnson, L.N., Cruciani, G., Son, J.C., Bichard, C.J.F., Fleet, G.W.J., Oikonomakos, N.G., Kontou, M. and Zographos, S.E., Glucose analogue inhibitors of glycogen phosphorylase: From crystallographic analysis to drug prediction using GRID force-field and GOLPE variable selection, Acta Cryst., D51 (1995) 458–472.

    CAS  Google Scholar 

  71. Cruciani, G. and Watson, K.A., Comparative molecular field analysis using GRID force-field and GOLPE variable selection methods in a study of inhibitors of glycogen phosphorylase b, J. Med. Chem., 37 (1994)2589–2601.

    Article  CAS  Google Scholar 

  72. Recanatini, M., Comparative molecular field analysis of non-steroidal aromatase inhibitors related to fadrozole, J. Comput.-Aid. Mol. Design, 10 (1996) 74–82.

    Article  CAS  Google Scholar 

  73. Laughton, C.A., Zvelebil, M.J.J.M. and Neidle, S., A detailed molecular model for human aromatase, J. Steroid Biochem. Mol. Biol., 44 (1993) 399–407.

    Article  CAS  Google Scholar 

  74. Zhou, D., L., C.L., Laughton, C.A., Korzekwa, K.R. and Chen, S., Mutagenesis study at a postulated hydrophobic region near the active site of aromatase cytochrome P450, J. Biol. Chem., 269 (1994) 19501–19508.

    CAS  Google Scholar 

  75. Diana, G.D., Nitz., T.J., Mallamo, J.P. and Treasurywala, A.M., Antipicornavirus compounds: Use of rational drug design and molecular modeling, Antivir. Chem. Chemother., 4 (1993) 1–10.

    CAS  Google Scholar 

  76. Artico, M., Botta, M., Corelli, F., Mai, A., Massa, S. and Ragno, R., Investigation on QSAR and binding mode of a new class of human rhinovirus-14 inhibitors by CoMFA and docking experiments, Bioorg. Med. Chem., 4 (1996) 1715–1724.

    CAS  Google Scholar 

  77. Cho, S.J., Garsia, M.L.S., Bier, J. and Tropsha, A., Structure-based alignment and comparative molecular field analysis of acetylcholinesterase inhibitors, J. Med. Chem., 39 (1996) 5064–5071.

    CAS  Google Scholar 

  78. Tong, W., Collantes, E.R., Chen, Y. and Welsh, W.J., A comparative molecular field analysis study of N-benzylpiperidines as acelylcholinesterase inhibitors, J. Med. Chem., 39 (1996) 380–387.

    Article  CAS  Google Scholar 

  79. Oprea, T.I., Waller, C.L. and Marshall, G.R., 3D QSAR of human immunodeficiency virus (I) protease inhibitors: 3. Interpretation of CoMFA results, Drug Des. Discovery, 12(1994) 29–51.

    CAS  Google Scholar 

  80. Greco, G., Novellino, E., Pellecchia, M., Silipo, C. and Vittoria, A., Effects of variable section on CoMFA coefficient contour maps in a set of triazines inhibiting DHFR, J. Comput.-Aided Mol. Design, 8(1994)97–112.

    Article  CAS  Google Scholar 

  81. Kroemer, R.T. and Hecht, P., A new procedure for improving the predictiveness of CoMFA models and its application to a set of dihydrofolate reductase inhibitors, J. Compul.-Aid. Mol. Design, 9 (1995) 396–406.

    CAS  Google Scholar 

  82. Kroemer, R.T. and Hecht, P., Replacement of steric 6–12 potential-derived interaction energies by atombased indicator variables in CoMFA leads to models of higher consistency, J. Comput.-Aid. Mol. Design, 9(1995)205–212.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kim, K.H. (1998). Building a Bridge between G-Protein-Coupled Receptor Modelling, Protein Crystallography and 3D QSAR Studies for Ligand Design. In: Kubinyi, H., Folkers, G., Martin, Y.C. (eds) 3D QSAR in Drug Design. Three-Dimensional Quantitative Structure Activity Relationships, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-46858-1_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-46858-1_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4791-0

  • Online ISBN: 978-0-306-46858-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics