Skip to main content

Opsonophagocytosis Versus Lectinophagocytosis in Human Milk Macrophages

  • Chapter
Short and Long Term Effects of Breast Feeding on Child Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 478))

Abstract

Some important immunoprotective effects of human breast milk have been attributed to the presence of macrophages. We investigated the generation of superoxide anion (O2) by monocytes and human milk macrophages after stimulation with opsonized and unopsonized zymosan in the absence and presence of mannose as an inhibitor to investigate lectinophagocytic and opsonophagocytic properties. Peripheral blood monocytes generated more O2- than human milk macrophages (417,4 ± 79,1 nmol O2 -/mg protein vs. 216,1 ± 15,1 nmol O2 -/mg protein, p<0,05) after stimulation with opsonized zymosan. When unopsonized zymosan was used as a serum-independent stimulus monocytes generated slightly less O2- in comparison to human milk macrophages (150,8 ± 34,5 nmol/mg protein vs. 176,1 ± 18 nmol O2 -/mg protein, p<0,05). These findings demonstrate that the proportion of opsonin-independent phagocytosis in human milk macrophages is higher than in monocytes (82% vs. 36%). When mannose was used as an inhibitor a significantly higher reduction of O2-generation occurred in human milk macrophages compared to monocytes stimulated with opsonized zymosan, whereas no difference was found when unopsonized zymosan was used. These results indicate that human milk macrophages are stimulated to a greater extent by opsonin-independent mechanisms than blood bornemonocytes. As the colostrum and the intestinal environment of the neonate offers only a little amount of opsonins like complement and immunoglobulin G, such a differentiation to lectinophagocytic properties could bear a great advantage for protective fuctions of human milk macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adachi, Y., Ohno, N., Yadomae, T., 1993, Inhibitory effect of beta-glucans on zymosan-mediated hydrogen peroxide production by murine peritoneal macrophages in vitro. Biol Pharm Bull 16: 462–467.

    PubMed  CAS  Google Scholar 

  • Astarie-Dequeker, C., N’Diaye, E., Le Cabec, V., Rittig, M. G., Prandi, J., Maridonneau-Parini, I., 1999, The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect Immun 67,469–477.

    PubMed  CAS  Google Scholar 

  • Bacon, J. S. D., Farmer, V. C., Jones, D., Taylor, I. F., 1969, The glucan components of the cell wall of baker’s yeast (Saccharomyces cerevisiae) considered in relation to ist ultrastructure. Biochem J 114: 557.

    PubMed  CAS  Google Scholar 

  • Balkwill, F. R. and Hogg, N., 1979, Characterization of human breast milk macrophages cytostaitc for human cell lines. J Immunol 123: 1451–1456.

    PubMed  CAS  Google Scholar 

  • Berton, G., Gordon, S., 1983, Modulation of macrophage mannosyl-specific receptors by cultivation on immobilized zymosan. Effects on superoxide-anion release and phagocytosis. Immunology 49: 705–715.

    PubMed  CAS  Google Scholar 

  • Blau, H., Passwell, H., Levanon, M., Davidson, J., Kohen, F., Ramot, B., 1983, Studies on human milk macrophages: effect of activation on phagocytosis and secretion of prostaglandin E2 and lysozyme. Pediatr Res 17: 241–245.

    PubMed  CAS  Google Scholar 

  • Cain, J. A., Newman, S. L., Ross, G. D., 1987, Role of complement receptor type three and serum opsonins in the neutrophil response to yeast. Complement 4: 75–86.

    PubMed  CAS  Google Scholar 

  • Cheson, B. D., Moms, S. E., 1981, The role of complement and IgG on zymosan opsonization. Int Arch Allergy Appl Immunol66: 48–54.

    PubMed  CAS  Google Scholar 

  • Clemente, J., Clerici, N., Espinosa, M. A., Leyva-Cobiàn, F., 1986, Defective chemotactic response of human alveolar and colostral macrophages. Immunol Lett 12: 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Cole, F.S., Schneeberger, E. E., Lichtenberg, N. A. and Colten, H. R., 1982, Complement biosynthesis in human breast milk macrophages and blood monocytes. Immunology 46: 429–441.

    PubMed  CAS  Google Scholar 

  • Cummings N. P., Neifert, M. R., Pabst M. J., Johnston R. B., 1985, Oxidative metabolic response and micorbicidal activity of human milk macrophages: effect of lio

    Google Scholar 

  • Czop, J. K., Austen, K. F., 1985, A beta-glucan inhibitable receptor on human monocytes: its identity with the phagocytic receptor for particulate activators of the alternative complement pathway. J Immunol 134: 2588–2593.

    PubMed  CAS  Google Scholar 

  • Czop, J. K., Kay, J., 1991, Isolation and characterization of β-glucan receptors on human mononuclear phagocytes. J Exp Med 173: 1511–1520.

    Article  PubMed  CAS  Google Scholar 

  • Di Carlo, F. J., Fiore, J. V., 1958, On the composition of zymosan. Science 127: 756.

    Google Scholar 

  • Elstad, M. R., Parker, C. J., Cowley, F. S., Wilcox, L. A., McIntyre, T. M., Prescot, S. M., Zimmerman, G. A., 1994, CD11b/CD18 integrin and a beta-glucan receptor act in concert to induce the synthesis of platelet-activating factor by monocytes. J Immunol 152: 220–230.

    PubMed  CAS  Google Scholar 

  • Everaerts, M. C., Van den Berghe, G., Saint-Remy, J. M., Corbeel, L., 1985, Effect of age-dependent enzymatic degradation of zymosan into oligosaccharides during incubation with serum on its opsonization by complement. Pediatr Res 19: 1293–1297.

    PubMed  CAS  Google Scholar 

  • Ezekowitz, R. A., Sim, R. B., Hill, M., Gordon, S., 1984, Local opsonization by secreted macrophage complement components. Role of receptors for complement in uptake of zymosan. J Exp Med 159: 244–260.

    Article  PubMed  CAS  Google Scholar 

  • Ezekowitz, R. A., Sim, R. B., MacPherson, G. G., Gordon, S., 1985, Interaction of human monocytes, macrophages and polymorphonuclear leukocytes with zymosan in vitro. Role of type 3 complement receptors and macrophage-derived complement. J Clin Invest 76: 2368–2376.

    PubMed  CAS  Google Scholar 

  • Ezekowitz, R. A. B., Sastry, K., Bailly, P., Warner, A., 1990, Molecular characterization of the human macrophages mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Col-1 cells. J Exp Med 172, 1785–1794.

    Article  PubMed  CAS  Google Scholar 

  • Hetland, G., Eskeland, T., 1986, Formation of the functional alternative pathway of complement by human monocytes in vitro as demonstrated by phagocytosis of agarose beads. Scand J Immunol23: 301–308.

    PubMed  CAS  Google Scholar 

  • Janusz, M. J., Austen, K. F., Czop, J. K., 1989, Isolation of a yeast heptaglucoside that inhibits monocyte phagocytosis of zymosan particles. J Immunol 142: 959–965.

    PubMed  CAS  Google Scholar 

  • Johnston, R. B., Godzik, C. A., Cohn, Z. A., 1978, Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med 148, 115–127.

    Article  PubMed  CAS  Google Scholar 

  • Klegeris, A., McGeer, P. L., 1994, Inhibition of respiratory burst in macrophages by complement receptor blockade. Eur J Pharmacol260: 271–277.

    Article  Google Scholar 

  • Klegeris, A,, Budd, T. C., Greenfield, S. A,, 1996, Acetylcholinesteraose-induced respiratory burst in macrophages: evidence for the involvement of the macrophage mannose-fucose receptor. Biochim Biophys Acta 1289: 159–168.

    PubMed  Google Scholar 

  • Leyva-Cobiàn, F., Clemente, J., 1984, Phenotypic characterization and functional activity of human milk macrophages. Immunol Lett 8: 249–256.

    PubMed  Google Scholar 

  • Lombard, Y., Giamis, J., Makaya-Kumba, M., Fonteneau, P., Poindron, P., 1994, A new method for studying the binding and ingestion of zymosan particles by macrophages. J Immunol Methods 174: 155–165.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, 0. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951: Protein measurement with the folin phenol reagent. J Biol Chem 193:265.

    PubMed  CAS  Google Scholar 

  • Mandyla, H., Xanthou, M., Maravelias, C., Baum, D., Matsaniotis, N., 1982, Antibody dependent cytotoxicity of human colostrum phagocytes. Pediatr Res 16: 995–999.

    PubMed  CAS  Google Scholar 

  • Mokoena, T., Gordon, S., 1985, Human macrophage activation. J Clin Invest 75: 624–631.

    Article  PubMed  CAS  Google Scholar 

  • Mori, M., Hayward, A. R., 1982: Phenotype and function of human milk monocytes as antigen presenting cells. Clin Immunol Immunopathol 23: 94–99.

    Article  PubMed  CAS  Google Scholar 

  • Ogra, P. K. and Greene, H. L., 1982, Human milk and breast feeding: an update on the state of the art. Pediatr Res 16: 266–271.

    PubMed  CAS  Google Scholar 

  • Okazaki, M., Chiba, N., Adachi, Y., Ohno, N., Yadomae, T., 1996, Signal transduction pathway on beta-glucans-triggered hydrogen peroxide production by murine peritoneal macrophages in vitro. Biol Pharm Bull 19: 18–23.

    PubMed  CAS  Google Scholar 

  • Rivas, R. A., el-Mohandes, A. A,, Katona, I. M., 1994, Mononuclear phagocytic cells in human milk: HLA-DR and Fc gamma R ligand expression. Biol Neonate 66: 195–204.

    PubMed  CAS  Google Scholar 

  • Schenkein, H. A,, Ruddy, S., 1981, The role of immunoglobulins in alternative complement pathway activation by zymosan. I Human IgG with specifity for zymosan enhances alternative pathway activation by zymosan. J Immunol 126: 7–10.

    PubMed  CAS  Google Scholar 

  • Schroten, H., Uhlenbruck, G., Hanisch, F. G. and Mil, A., 1987, Varying rates of phagocytosis of human blood monocytes and breast milk macrophages: effect of intralipid and milk fat globules. Monatsschr Kinderheilk 135: 36–40.

    CAS  Google Scholar 

  • Sebring, P. E., Bender, J. G., Van Epps, D. E., 1989, Decreased opsonic activity for Staphylococcus aureus in neonatal and late gestation maternal sera. Inflammation 13: 571–582.

    Article  PubMed  CAS  Google Scholar 

  • Speer, C. P., Gahr, M., Pabst, M.J., 1986, Phagocytosis-associated oxidative metabolism in human milk macrophages. Acta Paediatr. Scand. 74: 444–451.

    Google Scholar 

  • Speer, C. P., Hein-Kreikenbaum, H., 1993, Immunologic importance of breast milk. Monatsschr Kinderheilkd 141, 10–20.

    PubMed  CAS  Google Scholar 

  • Speert, D. P., Silverstein, S. C., 1985, Phagocytosis of unopsonized zymosan by human monocyte-derived macrophages: maturation and inhibition by mannan. J Leukoc Biol 38: 655–658, 1985.

    PubMed  CAS  Google Scholar 

  • Stahl, P. D., Ezekowitz, R. A. B., 1998, The mannose receptor is a pattern recogition receptor involved in host defense. Curr Opinion Immunol 10: 50–55.

    CAS  Google Scholar 

  • Sung, S. J., Nelson, R. S., Silverstein, S. C., 1983, Yeast mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages. J Cell Biol96: 160–166.

    Article  PubMed  CAS  Google Scholar 

  • Thornton, B. P., Vetvicka, V., Pitman, M., Goldman, R. C., Ross, G. D., 1996, Analysis of the sugar specifity and molecular location of the Bglucan-binding lectin site of complement receptor type 3 (CDllb/CD18). J Immunol 156: 1235–1246.

    PubMed  CAS  Google Scholar 

  • Tsuda, H., Dickey, W. D., Goldman, A. S., 1984, Separation of human colostral macrophages and neutrophils on gelatin and collagen serum substrata. Cell Struct Funct 8: 367–371.

    Google Scholar 

  • Valletta, E. A., Berton, G., 1987, Desensitization of macrophage oxygen metabolism on immobilized ligands: different effect of immunoglobulin G and complement. J Immunol 15: 4366–4373.

    Google Scholar 

  • Vassao, R. C., Carneiro-Sampaio, M. M., 1989, Phagocytic activity of human colostrum macrophages. Braz J Med Biol Res 22: 457–464.

    PubMed  CAS  Google Scholar 

  • Warr, G. A., 1980, A macrophage receptor for (mannose/glucosamine)-glycoproteins of potential importance in phagocytic activity. Biochem Biophys Res Commun 93: 737–745.

    Article  PubMed  CAS  Google Scholar 

  • Xia, Y., Vetvicka V., Yan, J., Hanikyrova, M., Mayadas, T., Ross, G. D., 1999, The β-glucan-binding lectin site of mouse CR3 (CDl 1b/CD18) and its functions in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J Immunol 162: 2281–2290.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schroten, H., Kuczera, F., Kohler, H., Adam, R. (2002). Opsonophagocytosis Versus Lectinophagocytosis in Human Milk Macrophages. In: Koletzko, B., Michaelsen, K.F., Hernell, O. (eds) Short and Long Term Effects of Breast Feeding on Child Health. Advances in Experimental Medicine and Biology, vol 478. Springer, Boston, MA. https://doi.org/10.1007/0-306-46830-1_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-46830-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46405-8

  • Online ISBN: 978-0-306-46830-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics