Skip to main content

Biological Indicators of Ionizing Radiation in Nature

  • Chapter
  • First Online:
Environmental Indicators

Abstract

Ionizing radiation that consists of α, β and γ rays can directly damage DNA and other molecules and as such result in somatic or germline mutations. The consequences of ionizing radiation for living beings cannot be measured with a Geiger counter because it will depend on external dose, internal dose, and the extent of DNA repair. In addition it will depend on the environmental conditions under which living organisms exist. We list environmental indicators of ionizing condition that reveal immediate and long-term consequences ranging from changes in DNA, over damaged cells and organs to altered gene function and development, reduced fecundity and survival, and hence to negative population trends, and altered communities and ecosystems and perturbed ecosystem functioning. We test for consistency in biological indicator ability across spatial and temporal scales relying on long-term field data collected at Chernobyl and Fukushima, and we test for consistency in indicator ability among indicators. Finally, we address the direct and indirect effects of ionizing radiation and we discuss the species or taxa most susceptible to the effects of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bibby CJ, Hill DA, Burgess ND, Mustoe S (2005) Bird census techniques. Academic, London

    Google Scholar 

  • Bonisoli-Alquati A, Voris A, Mousseau TA, Møller AP, Saino N, Wyatt M (2010) DNA damage in barn swallows (Hirundo rustica) from the Chernobyl region detected by use of the Comet assay. Comp Biochem Physiol C 151:271–277

    Google Scholar 

  • Bonisoli-Alquati A, Møller AP, Rudolfsen G, Saino N, Caprioli M, Ostermiller S, Mousseau TA (2011) The effects of radiation on sperm swimming behavior depend on plasma oxidative status in the barn swallow (Hirundo rustica). J Comp Physiol B 159:105–112

    Google Scholar 

  • Boubriak II, Grozinsky DM, Polischuk VP, Naumenko VD, Guschcha NP, Micheev AN, McCready SJ, Osborne DJ (2008) Mutation and impairment of DNA repair function in pollen of Betula verrucosa and seeds of Oenothera biennis from differently radionuclide-contaminated sites of Chernobyl. Ann Bot 101:267–276

    Article  CAS  Google Scholar 

  • Danchenko M, Skultety L, Rashydov NM, Berezhna VV, Mátel L, Salaj T, Pret’ová A, Hajduch M (2009) Proteomic analysis of mature soybean seeds from the Chernobyl area suggests plant adaptation to the contaminated environment. J Proteome Res 8:2915–2922

    Article  CAS  Google Scholar 

  • Dubrova YE, Nesterov VN, Krouchinsky NG, Ostapenko VA, Neumann R, Neil DL, Jeffreys AJ (1996) Human minisatellite mutation rate after the Chernobyl accident. Nature 380:683–686

    Article  CAS  Google Scholar 

  • Ellegren H, Lindgren G, Primmer CR, Møller AP (1997) Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389:593–596

    Article  CAS  Google Scholar 

  • Forster L, Forster P, Lutz-Bonengel S, Willkomm H, Brinkmann B (2002) Natural radioactivity and human mitochondrial DNA mutations. Proc Natl Acad Sci U S A 99:13950–13954

    Article  CAS  Google Scholar 

  • Galván I, Mousseau TA, Møller AP (2011) Bird population declines due to radiation exposure at Chernobyl are stronger in species with pheomelanin-based colouration. Oecologia 165:827–835

    Article  Google Scholar 

  • Garnier-Laplace J, Geras’kin S, Della-Vedova C, Beaugelin-Seiller K, Hinton TG, Real A, Oudalova A (2012) Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. J Environ Radioact 121:12–21

    Article  Google Scholar 

  • Hiyama A, Nohara C, Kinjo S, Taira W, Gima S, Tanahara A, Otaki JM (2012) The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Nat Sci Rep 2:570

    Google Scholar 

  • Klubicová K, Danchenko M, Skultety L, Miernyk JA, Rashydov NM, Berezhna VV, Pret’ová A, Hajduch M (2010) Proteomics analysis of flax grown in Chernobyl area suggests limited effect of contaminated environment on seed proteome. Environ Sci Technol 44:6940–6946

    Article  Google Scholar 

  • Kordium EL, Sidorenko PG (1997) The results of the cytogenetic monitoring of the species of angiosperm plants growing in the area of the radionuclide contamination after the accident at the Chernobyl Atomic Electric Power Station. Tsitol Genet 31:39–46 (in Russian)

    Google Scholar 

  • Lehman AR (2006) DNA repair. Elsevier, Amsterdam

    Google Scholar 

  • Lelieveld J, Kunkel D, Lawrence MG (2012) Global risk of radioactive fallout after major nuclear reactor accidents. Atmos Chem Phys 12:4245–4258

    Article  CAS  Google Scholar 

  • Lubin J, Boice J Jr (1997) Lung cancer risk from residential radon: meta-analysis of eight epidemiologic studies. J Natl Cancer Inst 89:49–57

    Article  CAS  Google Scholar 

  • Møller AP (1993) Morphology and sexual selection in the barn swallow Hirundo rustica in Chernobyl, Ukraine. Proc R Soc Lond B Biol Sci 252:51–57

    Article  Google Scholar 

  • Møller AP (1998) Developmental instability of plants and radiation from Chernobyl. Oikos 81:444–448

    Article  Google Scholar 

  • Møller AP (2012) The effects of natural variation in background radioactivity on humans, animals and other organisms. Biol Rev 88:226–254

    Article  Google Scholar 

  • Møller AP, Mousseau TA (2001) Albinism and phenotype of barn swallows Hirundo rustica from Chernobyl. Evolution 55:2097–2104

    Article  Google Scholar 

  • Møller AP, Mousseau TA (2003) Mutation and sexual selection: a test using barn swallows from Chernobyl. Evolution 57:2139–2146

    Article  Google Scholar 

  • Møller AP, Surai PF, Mousseau TA (2005) Antioxidants, radiation and mutation in barn swallows from Chernobyl. Proc R Soc Lond B 272:247–253

    Article  Google Scholar 

  • Møller AP, Mousseau TA (2006) Biological consequences of Chernobyl: 20 years after the disaster. Trends Ecol Evol 21:200–207

    Article  Google Scholar 

  • Møller AP, Mousseau TA (2007a) Determinants of interspecific variation in population declines of birds from exposure to radiation at Chernobyl. J Appl Ecol 44:909–919

    Article  Google Scholar 

  • Møller AP, Mousseau TA (2007b) Birds prefer to breed in sites with low radioactivity in Chernobyl. Proc R Soc Lond B Biol Sci 274:1443–1448

    Article  Google Scholar 

  • Møller AP, Mousseau TA, Lynn C, Ostermiller S, Rudolfsen G (2008) Impaired swimming behavior and morphology of sperm from barn swallows Hirundo rustica in Chernobyl. Mutat Res 650:210–216

    Article  Google Scholar 

  • Møller AP, Mousseau TA (2009) Reduced abundance of raptors in radioactively contaminated areas near Chernobyl. J Ornithol 150:239–246

    Article  Google Scholar 

  • Møller AP, Mousseau TA (2011a) Efficiency of bio-indicators for low-level radiation under field conditions. Ecol Indic 11:424–430

    Article  Google Scholar 

  • Møller AP, Mousseau TA (2011b) Conservation consequences of Chernobyl and other nuclear accidents. Biol Conserv 114:2787–2798

    Article  Google Scholar 

  • Møller AP, Bonisoli-Alquati A, Rudolfsen G, Mousseau TA (2012) Elevated mortality among birds in Chernobyl as judged from skewed age and sex ratios. PLoS One 7(4):e35223

    Article  Google Scholar 

  • Møller AP, Mousseau TA (2013) Assessing effects of radiation on abundance of mammals and predator-prey interactions in Chernobyl using tracks in the snow. Ecol Indic 26:112–116

    Article  Google Scholar 

  • Møller AP, Mousseau TA, Milinevsky G, Peklo A, Pysanets E, Szép T (2005a) Condition, reproduction and survival of barn swallows from Chernobyl. J Anim Ecol 74:1102–1111

    Article  Google Scholar 

  • Møller AP, Surai PF, Mousseau TA (2005b) Antioxidants, radiation and mutation in barn swallows from Chernobyl. Proc R Soc Lond B 272:247–253

    Article  Google Scholar 

  • Møller AP, Hobson KA, Mousseau TA, Peklo AM (2006) Chernobyl as a population sink for barn swallows: tracking dispersal using stable isotope profiles. Ecol Appl 16:1696–1705

    Article  Google Scholar 

  • Møller AP, Mousseau TA, de Lope F, Saino N (2007) Elevated frequency of abnormalities in barn swallows from Chernobyl. Biol Lett 3:414–417

    Article  Google Scholar 

  • Møller AP, Bonisoli-Alquati A, Rudolfsen G, Mousseau TA (2011) Chernobyl birds have smaller brains. PLoS One 6(2):e16862

    Article  Google Scholar 

  • Møller AP, Bonisoli-Alquati A, Mousseau TA (2013a) High frequency of albinism and tumors in free-living birds at Chernobyl. Mutation Res 757:52–59

    Google Scholar 

  • Møller AP, Nishiumi I, Suzuki H, Ueda K, Mousseau TA (2013b) Differences in effects of radiation on abundance of animals in Fukushima and Chernobyl. Ecol Indic 14:75–81

    Article  Google Scholar 

  • Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL (1996) Genomic instability induced by ionizing radiation. Radiat Res 146:247–258

    Article  CAS  Google Scholar 

  • Mousseau TA, M½ller AP (2013) Elevated frequencies of cataracts in birds from Chernobyl. PLoS One 8(7):e66939

    Google Scholar 

  • Muller HJ (1954) The manner of production of mutations by radiation. In: Hollaender A (ed) Radiation biology, vol 1, High energy radiation. McGraw-Hill, New York, pp 475–626

    Google Scholar 

  • Nadson GA, Philippov GS (1925) Influence des rayons x sur la sexualité et la formation des mutantes chez les champignons inferieurs (Mucorinées). C R Soc Biol Filiales 93:473–474

    Google Scholar 

  • Ragon M, Restoux G, Moreira D, Møller AP, López-García P (2011) Sunlight-exposed biofilm microbial communities are naturally resistant to Chernobyl ionizing-radiation levels. PLoS One 6(7):e21764

    Article  CAS  Google Scholar 

  • Serdiuk A, Bebeshko V, Bazyka D, Yamashita S (eds) (2011) Health effects of the Chornobyl accident: a quarter of century aftermath. DIA, Kiev

    Google Scholar 

  • von Sonntag C (2010) Free-radical-induced DNA damage and its repair: a chemical perspective. Springer, Berlin

    Google Scholar 

  • Yablokov AV, Nesterenko VB, Nesterenko AV (2009) Chernobyl: consequences of the catastrophe for people and nature. New York Academy of Sciences, New York

    Google Scholar 

  • Zakharov VM, Krysanov EY (eds) (1996) Consequences of the Chernobyl catastrophe: environmental health. Center for Russian Environmental Policy, Moscow

    Google Scholar 

  • Zhang ZL, Sun J, Dong JY, Tian HL, Xue L, Qin LQ, Tong J (2012) Residential radon and lung cancer risk: an updated meta-analysis of case-control studies. Asian Pac J Cancer Prev 13:2459–2465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Pape Møller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Møller, A.P., Mousseau, T.A. (2015). Biological Indicators of Ionizing Radiation in Nature. In: Armon, R., Hänninen, O. (eds) Environmental Indicators. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9499-2_49

Download citation

Publish with us

Policies and ethics