Skip to main content

Double Covers of Pseudo-orthogonal Groups

  • Chapter
Clifford Analysis and Its Applications

Part of the book series: NATO Science Series ((NAII,volume 25))

Abstract

For every pair (m, n) of non-negative integers one defines E m,n to be the group of equivalence classes of central extensions of the pseudo-orthogonal group O m,n by ℤ2. The isomorphism k : E m,n → H2(BO m,n 2) is used to show that E m,n is isomorphic to the group ℤ l(m,n)2 where l(0,0) = 0, l(l,0) = 1, l(m,0) = 2, l(1.1) = 3, l(1,n) = 4 and l(m,n) = 5 for m,n > 1. If M is a manifold with a metric tensor g of signature (m, n) and f is a smooth map from M to the classifying space BO m,n inducing the principal O m,n -bundle P of orthonormal frames defined by g, then the bundle P can be reduced to an element H of E m,n —i.e. to a double cover of O m,n —if, and only if, the element f*k(H) of H2(M, ℤ2) vanishes. This generalizes the classical topological condition for the existence of a pin structure on a pseudo-Riemannian manifold. The set of all 32 = 25 inequivalent double covers of O m × O n , the maximal compact subgroup of O m,n , m,n > 1, is described explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atiyah, M. F., R. Bott, and A. Shapiro: 1964, ‘Clifford modules’. Topology 3, Suppl. 1, 3–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Borel, A. and F. Hirzebruch: 1959, ‘Characteristic classes and homogeneous spaces, II’. Amer. J. Math. 81, 315–382.

    Article  MathSciNet  Google Scholar 

  • Bourbaki, N.: 1970, Éléments de Mathématiques: Algèbre, Ch. 1 à 3. Paris: Diffusion C.C.L.S.

    Google Scholar 

  • Carlip, S. and C. DeWitt-Morette: 1988, ‘Where the sign of the metric makes a difference’. Phys. Rev. Lett. 60, 1599–1601.

    Article  MathSciNet  Google Scholar 

  • Chamblin, A.: 1994, ‘On the obstructions to non-Cliffordian pin structures’. Comm. Math. Phys. 164, 65–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Dabrowski, L.: 1988, Group Actions on Spinors. Napoli: Bibliopolis.

    MATH  Google Scholar 

  • DeWitt-Morette, C.and B. S. DeWitt: 1990, ‘Pin groups in physics’. Phys. Rev. D 41, 1901–07.

    Article  MathSciNet  Google Scholar 

  • Eilenberg, S. and S. MacLane: 1942, ‘Group extensions and homology’. Ann. Math. 43, 757–831.

    Article  MathSciNet  MATH  Google Scholar 

  • Fierz, M. and V. F. Weisskopf: 1960, Theoretical Physics in the Twentieth Century: A Memorial Volume to Wolfgang Pauli. New York: Interscience.

    Google Scholar 

  • Haefliger, A.: 1956, ’sur l’extension du groupe structural d'un espace fibrè’. C. R. Acad. Sci. (Paris) 243, 558–560.

    MathSciNet  MATH  Google Scholar 

  • Husemoller, D.: 1966, Fibre Bundles. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Jackowski, S.: 2000, private communication.

    Google Scholar 

  • Karoubi, M.: 1968, ‘Algèbres de Clifford et if-théorie’. Ann. Sci. Éc. Norm. Sup., 4ème sér. 1, 161–270.

    MathSciNet  MATH  Google Scholar 

  • MacLane, S.: 1963, Homology. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Milnor, J.: 1963, ’spin structures on manifolds’. Enseign. Math. 9, 198–203.

    MathSciNet  MATH  Google Scholar 

  • Milnor, J.: 1983, ‘On the homology of Lie groups made discrete’. Comment. Math. Helv. 58, 72–85. MR 85b:57050 by E. Friedlander.

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor, J. W. and J. D. Stasheff: 1974, Characteristic Classes. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Robinson, I. and A. Trautman: 1993, ‘The conformai geometry of complex quadrics and the fractional-linear form of Möbius transformations’. J. Math. Phys. 34, 5391–5406.

    Article  MathSciNet  MATH  Google Scholar 

  • Schrödinger, E.: 1932, ‘Diracsches Elektron im Schwerefeld Ii’. Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. XI, 105–28.

    Google Scholar 

  • Shirokov, Y. M.: 1960, ’space and time reflections in relativistic theory’. Nuclear Physics 15, 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  • Spanier, E. H.: 1966, Algebraic Topology. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Ward, R. S. and R. O. Wells, Jr.: 1990, Twistor Geometry and Field Theory. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Trautman, A. (2001). Double Covers of Pseudo-orthogonal Groups. In: Brackx, F., Chisholm, J.S.R., Souček, V. (eds) Clifford Analysis and Its Applications. NATO Science Series, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0862-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0862-4_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7045-1

  • Online ISBN: 978-94-010-0862-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics