Skip to main content

Computer Simulation of Growth and Aggregation Processes

  • Chapter
On Growth and Form

Part of the book series: NATO ASI Series ((NSSE,volume 100))

Abstract

In recent years considerable interest has developed in the formation of random structures under non-equilibrium conditions. Several factors have contributed to the growth of this area. These include the possibility of substantial practical benefits and impact on other areas of science, the hope that the sort of theoretical methods which have been so successful in advancing our understanding of critical phenomena can be applied to a broader range of problems and the recognition that this is an important area of science which has received little attention in the past. Computer simulations have played an important role in the development of this area. In fact much of what we now know about non-equilibrium growth processes has come from computer simulations. Computer simulations can be used to test ideas concerning the behavior of experimental systems and to pose well defined problems for theoretical analysis. In this way they provide a valuable bridge between theory and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Witten, T. A. and Sander, L. M., Phys. Rev. Lett., 47, 1400 (1981).

    Article  CAS  Google Scholar 

  2. Meakin, P., Phys. Rev. Lett., 51, 1119 (1983).

    Article  Google Scholar 

  3. Kolb, M., Botet, R., and Jullien, R., Phys. Rev. Lett., 51, 1123 (1983).

    Article  Google Scholar 

  4. Eden, M., Proc. 4th Berkeley Symposium Math., Stat, and Prob., 4, 223 (1961).

    Google Scholar 

  5. Mandelbrot, B. B., “The Fractal Geometry of Nature”, W. H. Freeman, San Francisco (1982).

    Google Scholar 

  6. This correspondence between the Eden model with “protected” voids and the Witten-Sander model in the limit of very small sticking probabilities is valid only if the mobile particle in the Witten-Sander model is given an opportunity to stick after each move including those attempted moves which return the particle to its original position because they would result in multiple lattice site occupancy. If the sticking probability is defined as the probability that a particle will stick at a particular unoccupied interface site before moving on to another site then the equivalent Eden model in the limit of small sticking probability is one in which the ratio of growth probabilities for sites with 1, 2 and 3 occupied nearest neighbors is 3:2:1 (with no growth in enclosed voids). This model gives an average density of 0.70–0.71 in good agreement with results obtained from the corresponding Witten-Sander model with a low sticking probability (0.001 at all surface sites).

    Google Scholar 

  7. Williams, T. and Bjerknes, R., Nature, 236, 19 (1972).

    Article  CAS  Google Scholar 

  8. Peters, H. P., Stauffer, D., Holters, H. P. and Loewenich, K., Z. Physik B34, 399 (1979).

    Google Scholar 

  9. Meakin, P. and Witten, T. A., Phys. Rev. A28, 2985 (1983).

    CAS  Google Scholar 

  10. D. Richardson, Proc Cambridge Philos Soc 74 515 (1973).

    Article  Google Scholar 

  11. Sawada, Y., Ohta, S., Yamazaki, M., and Honjo, H., Phys. Rev. A26, 3557 (1982).

    Article  Google Scholar 

  12. Niemeyer, L., Pietronero, L., and Wiesmann, A. J., Phys. Rev. Lett., 52, 1033 (1984).

    Article  Google Scholar 

  13. Dhar, D. and Ramaswamy, R., Phys. Rev. Lett. 54, 1346 (1985).

    Article  Google Scholar 

  14. Martin, H., Vannimenus, J. and Nadal, J. P., preprint

    Google Scholar 

  15. Rickvold, P. A., Phys. Rev. A26, 647 (1982).

    Article  Google Scholar 

  16. Meakin, P., Phys. Rev. B28, 6718 (1983).

    Article  Google Scholar 

  17. Sander, L. M., in “Kinetics of Aggregation and Gelation”, Family, F. and Landau, D. P., Eds. Elsevier-North Holland, Amsterdam, 1984.

    Google Scholar 

  18. Meakin, P., Leyvraz, F. and Stanley, H. E., Phys. Rev. A31, 1195 (1985).

    Article  Google Scholar 

  19. Vold, M. J., J. Colloid Sci. 18, 684 (1963), J. Colloid Sci. 14, 168 (1959), J. Phys. Chem. 63, 1608 (1959), J. Phys. Chem. 64, 1616 (1960).

    Google Scholar 

  20. Sutherland, D. M., J. Colloid and Interface Sci., 22, 300 (1966).

    Article  CAS  Google Scholar 

  21. Meakin, P., J. Colloid and Interface Sci. 96, 415 (1983).

    Article  CAS  Google Scholar 

  22. Bensimon, D., Domany, E. and Aharony, A., Phys. Rev. Lett. 51, 1394 (1983).

    Article  CAS  Google Scholar 

  23. Ball R. and Witten, T. A., Phys. Rev. A29, 2966, (1984).

    Article  Google Scholar 

  24. Bensimon, D., Shraiman, B. and Kadanoff, L. P., “Kinetics of Aggregation and Gelation”, Family, F. and Landau, D. P., Eds. Elsevier, North Holland, Amsterdam (1984).

    Google Scholar 

  25. Ramanlal, P. and Sander, L. M., Phys. Rev. Lett. 54, 1828 (1985).

    Article  CAS  Google Scholar 

  26. Leamy, H. J., Gilmer, G. H. and Dirks, A. G., in Vol. 6, “Current Topics in Materials Science”, E. Kaldis Ed. ( North Holland, Amsterdam, 1980 ).

    Google Scholar 

  27. Dirks, A. G. and Leamy, H. J., Thin Solid Films 47, 219 (1977).

    Article  CAS  Google Scholar 

  28. Meakin, P., unpublished.

    Google Scholar 

  29. Sutherland, D. N., J. Colloid Interface Sei. 25, 373 (1967), Nature 226, 1241 (1970). Sutherland, D. M. and Goodarz-Nia, I., Chem. Eng. Sei. 26, 2071 (1971).

    Google Scholar 

  30. Stanley, H. E., J. Phys. A10, L211 (1977).

    CAS  Google Scholar 

  31. Finegold, L. X., Biochim. Bophys. Acta 448, 393 (1976), Donneil, J. H. and Finegold, L. X., Biophys. J. 35, 783 (1981).

    Google Scholar 

  32. Meakin, P., Phys. Rev. A27, 604 (1983); Phys. Rev. A27, 1495 (1083).

    Google Scholar 

  33. Witten, T. A. and Sander, L. M., Phys. Rev. B27, 5686 (1983).

    Article  Google Scholar 

  34. Vicsek, T., Phys. Rev. Lett. 53, 2281 (1984).

    Article  CAS  Google Scholar 

  35. Patterson, L., Phys. Rev. Lett. 52, 1621 (1984).

    Article  Google Scholar 

  36. Kadanoff, L. P., preprint.

    Google Scholar 

  37. Nittmann, J., Daccord, G. and Stanley, H. E., Nature 314, 141 (1985).

    Article  CAS  Google Scholar 

  38. Tang, C., Phys. Rev. A31, 1977 (1985).

    Article  Google Scholar 

  39. Meakin, P. and Wasserman, Z., Chemical Physics 91, 391 (1984).

    Article  CAS  Google Scholar 

  40. Ball, R. C., Nauenberg, M. and Witten, T. A. Phys. Rev. A29 2017 (1984).

    Article  CAS  Google Scholar 

  41. Muthukuman, M., Phys. Rev. Lett. 50, 839 (1983).

    Article  Google Scholar 

  42. Tokuyama, M. and Kawasaki, K., Phys. Lett. 100A, 337 (1984).

    Article  Google Scholar 

  43. Meakin, P., J. Phys. A. xx xxxx (1985)

    Google Scholar 

  44. Brady, R. M., and Ball, R. C., CECAM Workshop, Orsay, 1984, (unpublished).

    Google Scholar 

  45. Meakin, P. and Sander, L. M., Phys. Rev. Lett. 54, 2053 (1985).

    Article  Google Scholar 

  46. Meakin, P. and Vicsek, T., Phys. Rev. Axx, xxxx (1985).

    Google Scholar 

  47. Kolb, M., preprint

    Google Scholar 

  48. Brady, R. M. and Ball, R. C., Nature 309, 225 (1984).

    Article  CAS  Google Scholar 

  49. Matsushita, M., Sano, M., Hayakawa, Y., Honjo, H. and Sawada, Y., Phys. Rev. Lett. 53, 286 (1984).

    Article  CAS  Google Scholar 

  50. Kapitulnik, A., private communication.

    Google Scholar 

  51. Elam, W. T., Wolf, S. A., Sprague, J., Gubser, D. V., Van Vechten, D., Barz, G. L. Jr., and Meakin, P., Phys. Rev. Lett. 54, 701 (1985).

    Article  CAS  Google Scholar 

  52. Botet, R., Jullien, R. and Kolb, M., J. Phys. A17, L75 (1984).

    Google Scholar 

  53. Jullien, R., Kolb, M. and Botet, R., J. Physique Lett. 45, L211 (1984).

    Article  Google Scholar 

  54. Forrest, S. R. and Witten, T. A., J. Phys. A12, L109 (1979).

    CAS  Google Scholar 

  55. Weitz, D. and Oliveria, M., Phys. Rev. Lett. 52, 1433 (1984).

    Article  CAS  Google Scholar 

  56. Schaefer, D. W., Martin, J. E., Wiltzius, P. and Cannell, D. S., Phys. Rev. Lett. 52, 2371 (1984).

    Article  CAS  Google Scholar 

  57. Jullien, R. and Kolb, M., J. Phys. A17, L639 (1984).

    CAS  Google Scholar 

  58. Weitz, D., Huang, J. S., Lin, M. Y. and Sung, J., Phys. Rev. Lett. 54, 1416 (1985).

    Article  CAS  Google Scholar 

  59. Cannell, D. S., private communication

    Google Scholar 

  60. Kolb, M., Phys. Rev. Lett. 53, 286 (1984).

    Article  Google Scholar 

  61. Ball R. C. and Thompson, B. R., J. Phys. A17, L951 (1984).

    CAS  Google Scholar 

  62. Hentschel, H. G. E. and Deutch, J. M., Phys. Rev. A29, 1609 (1984).

    Article  CAS  Google Scholar 

  63. Ball, R. C. and Witten, T. A., Proc. 3rd Conf. on Fractals, Gaithersburg, MD, 1983.

    Google Scholar 

  64. Matsushita, M. preprint.

    Google Scholar 

  65. Botet, R., J. Phys. A18, 847 (1985).

    CAS  Google Scholar 

  66. Obukhov, S. P. preprint.

    Google Scholar 

  67. Feder, J., Jdssang, T. and Rosenqvist, E., Phys. Rev. Lett. 53, 1403 (1985).

    Article  Google Scholar 

  68. Meakin, P., Chen, Z. Y. and Deutch, J. M., J. Chem. Phys. 82, 3786 (1985).

    Article  CAS  Google Scholar 

  69. Ziff, R. M., McGrady, E. D. and Meakin, P., J. Chem. Phys. (1985).

    Google Scholar 

  70. Jullien, R., Kolb, M. and Botet, R. in “Kinetics of Aggregation and Gelation”, F. Family and D. P. Landau Editors, Elsevier, North Holland, Amsterdam (1984). R. Botet, R. Jullien and M. Kolb, preprint.

    Google Scholar 

  71. Meakin, P. and Jullien, R., J. de Physique xx, xxxx (1985).

    Google Scholar 

  72. Meakin, P. unpublished.

    Google Scholar 

  73. Meakin, P., J. Chem. Phys. 81, 4637 (1984).

    Article  CAS  Google Scholar 

  74. Meakin, P. unpublished.

    Google Scholar 

  75. Vicsek, T. and Family, F., Phys. Rev. Lett. 52, 1669 (1984).

    Article  Google Scholar 

  76. Kolb, M., Phys. Rev. Lett. 53, 1653 (1984).

    Article  Google Scholar 

  77. Meakin, P., Vicsek, T. and Family, F., Phys. Rev. B31, 564 (1985).

    Google Scholar 

  78. Botet, R. and Jullien, R., J. Phys. A17, 2517 (1984).

    Google Scholar 

  79. Kang, K. and Redner, S., Phys. Rev. A30 2833 (1984).

    Article  CAS  Google Scholar 

  80. Meakin, P. and Stanley, H. E., Phys. Rev. Lett. 51, 1457 (1983).

    Article  Google Scholar 

  81. Witten, T. A. and Kantor, Y., Phys. Rev. B30, 4093 (1984).

    Article  Google Scholar 

  82. Sahimi, M., MacKarnin, M., Nordahl, T. and Tirrell, M. preprint.

    Google Scholar 

  83. Sander, L. M. private communication.

    Google Scholar 

  84. Cantor, Y. and Witten, T. A. preprint.

    Google Scholar 

  85. Chen, Z. Y., Deutch, J. M. and Meakin, P., J. Chem. Phys. 80, 2982 (1984).

    Article  CAS  Google Scholar 

  86. Plishke, M. and Racz, Z. Phys. Rev. Lett 53, 415 (1984).

    Article  Google Scholar 

  87. F. Family and T. Vicsek J. Phys A18 L75 (1985).

    Google Scholar 

  88. R. Jullien and R. Botet Phys. Rev. Lett 54 2055 (1985).

    Article  Google Scholar 

  89. P. Meakin, Phys. Rev A xx,xxx (1985).

    Google Scholar 

  90. P. Meakin, H. E. Stanley, A Coniglio and T. A. Witten Phys. Rev. A 32, 2364 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Meakin, P. (1986). Computer Simulation of Growth and Aggregation Processes. In: Stanley, H.E., Ostrowsky, N. (eds) On Growth and Form. NATO ASI Series, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5165-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5165-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-89838-850-3

  • Online ISBN: 978-94-009-5165-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics